ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (2)
  • 1
    Publication Date: 2018-09-26
    Description: Motivation Multi-task learning (MTL) is a machine learning technique for simultaneous learning of multiple related classification or regression tasks. Despite its increasing popularity, MTL algorithms are currently not available in the widely used software environment R, creating a bottleneck for their application in biomedical research. Results We developed an efficient, easy-to-use R library for MTL (www.r-project.org) comprising 10 algorithms applicable for regression, classification, joint predictor selection, task clustering, low-rank learning and incorporation of biological networks. We demonstrate the utility of the algorithms using simulated data. Availability and implementation The RMTL package is an open source R package and is freely available at https://github.com/transbioZI/RMTL. RMTL will also be available on cran.r-project.org. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-03
    Description: Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery.
    Print ISSN: 1467-5463
    Electronic ISSN: 1477-4054
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...