ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-29
    Description: In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities. The gut digesta and egested fecal pellets exhibited a microbial profile comprised of Gammaproteobacteria, mainly Vibrio , and Bacteroidetes. Both the seagrass and surrounding sea water revealed Alpha- and Betaproteobacteria. Bray–Curtis distances of microbial communities indicated a clustering profile with low intrasample variation. Predictive metagenomics performed on the microbial communities revealed that the gut tissue had high relative abundances of metabolisms assigned to the KEGG-Level-2 designation of energy metabolisms compared to the gut digesta, which had higher carbohydrate, amino acid and lipid metabolisms. Overall, the results of this study elaborate the spatial distribution of microbial communities in the gut ecosystem of L. variegatus , and specifically a selective attribute for Campylobacteraceae in the gut tissue. Also, the predictive functional significance of bacterial communities in uniquely compartmentalized gut ecosystems of L. variegatus has been described.
    Print ISSN: 0168-6496
    Electronic ISSN: 1574-6941
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-11
    Description: The Cape Verde mid-plate swell is the largest amplitude oceanic mid-plate swell on Earth at ~1800 km in diameter, with a crest ~2.2 km high, and long-wavelength positive geoid, gravity and heat flow anomalies of 8 m, 30 mGal and 10–15 mW m –2 , respectively. These characteristics and its location on the slow moving-to-stationary African Plate, which concentrates the volcanism and associated geophysical anomalies within a relatively small areal extent, makes it an ideal location to test various proposed mechanisms for swell support. Wide-angle seismic refraction data have been acquired along a ~474 km profile extending north–south from the swell crest. In this paper, the 2-D velocity–depth crustal model derived from forward modelling of phase traveltime picks is tested using two independent inversion approaches. The final crustal velocity–depth model derived from the combined modelling, shows no evidence for widespread thickened crust or for lower crustal velocities exceeding 7.3 km s –1 that are indicative of undercrustal magmatic material. Using the final velocity–depth model to constrain the crust for 3-D ‘whole plate’ lithospheric flexure modelling of island loading alone, we show that the lithosphere of the Cape Verde region appears stronger than expected for its age. Regional-scale modelling suggests that the majority of the swell height is supported by dynamic upwelling within the asthenosphere coupled with, but to a lesser degree, the effect of a region of low density in the deeper lithosphere, originating most likely from conductive reheating of the overlying plate due to its slow-to-stationary motion. When this regional upward-acting buoyancy force is considered in the context of the shorter wavelength flexure associated with island loading, modelling suggests that the apparent high plate strength is a consequence of, in effect, a regional unbending of a lithosphere that has a long-term strength typical for its age.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-29
    Description: Crustquake events may be connected with both rapid spin-up ‘glitches’ within the regular slowdown of neutron stars, and high-energy magnetar flares. We argue that magnetic-field decay builds up stresses in a neutron star's crust, as the elastic shear force resists the Lorentz force's desire to rearrange the global magnetic-field equilibrium. We derive a criterion for crust-breaking induced by a changing magnetic-field configuration, and use this to investigate strain patterns in a neutron star's crust for a variety of different magnetic-field models. Universally, we find that the crust is most liable to break if the magnetic field has a strong toroidal component, in which case the epicentre of the crustquake is around the equator. We calculate the energy released in a crustquake as a function of the fracture depth, finding that it is independent of field strength. Crust-breaking is, however, associated with a characteristic local field strength of 2.4 10 14  G for a breaking strain of 0.001, or 2.4 10 15  G at a breaking strain of 0.1. We find that even the most luminous magnetar giant flare could have been powered by crustal energy release alone.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-09
    Description: Giant -ray flares comprise the most extreme radiation events observed from magnetars. Developing on (sub)millisecond time-scales and generating vast amounts of energy within a fraction of a second, the initial phase of these extraordinary bursts presents a significant challenge for candidate trigger mechanisms. Here we assess and critically analyse the linear growth of the relativistic tearing instability in a globally twisted magnetosphere as the trigger mechanism for giant -ray flares. Our main constraints are given by the observed emission time-scales, the energy output of the giant flare spike, and inferred dipolar magnetic field strengths. We find that the minimum growth time of the linear mode is comparable to the e -folding rise time, i.e. ~10 –1  ms. With this result, we constrain basic geometric parameters of the current sheet. We also discuss the validity of the presumption that the e -folding emission time-scale may be equated with the growth time of a magnetohydrodynamic instability.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-02
    Description: Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-08-27
    Description: We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, T e , of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that T e can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modelling based on a uniform T e elastic plate suggests that T e increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10 °C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that T e landward of the outer rise is generally 40–65 per cent less than the T e seaward of the outer rise. Both landward and seaward T e increases with age of the lithosphere and are given by the depth to the 342–349 °C and 671–714 °C oceanic isotherm, respectively. A dependence of T e on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed T e to the predicted T e based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze, Evans & Goetze, Raterron et al . and Mei et al . all provide quite a good fit to the observed T e at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally too strong to fit the observations. The discrepancy in rheology within Pacific plate may be caused by differences in the timescale of loading and therefore the amount of viscoelastic stress relaxation that has occurred. Other possibilities include thermal rejuvenation and magma-assisted flexure at the Hawaiian Islands.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-31
    Description: The origin of the observed steep rotation curves of blue compact dwarf galaxies (BCDs) remains largely unexplained by theoretical models of BCD formation. We therefore investigate the rotation curves in BCDs formed from mergers between gas-rich dwarf irregular galaxies based on the results of numerical simulations for BCD formation. The principal results are as follows. The dark matter of merging dwarf irregulars undergoes a central concentration so that the central density can become up to six times higher than those of the initial dwarf irregulars. However, the more compact dark matter halo alone cannot reproduce the gradient differences observed between dwarf irregulars and BCDs. We provide further support that the central concentration of gas due to rapid gas transfer to the central regions of dwarf–dwarf mergers is responsible for the observed difference in rotation curve gradients. The BCDs with central gas concentration formed from merging can thus show steeply rising rotation curves in their central regions. Such gas concentration is also responsible for central starbursts of BCDs and the high central surface brightness and is consistent with previous BCD studies. We discuss the relationship between rotational velocity gradient and surface brightness, the dependence of BCD rotation curves on star formation threshold density, progenitor initial profile, interaction type, and merger mass ratio, as well as potential evolutionary links between dwarf irregulars, BCDs, and compact dwarf irregulars.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-01
    Description: Providing a link between magnetars and radio pulsars, high-magnetic-field neutron stars are ideal targets to investigate how bursting/magnetospheric activity and braking torque variations are connected to rotational glitches. The last spin-up glitch of the highly magnetized pulsar J1119–6127 back in 2007 was the first glitch in a rotationally powered radio pulsar to be accompanied by radiative changes. Moreover, it was followed by an uncommon glitch relaxation that resulted in a smaller spin-down rate relative to the prediction of the pre-glitch timing model. Here, we present four years of new radio timing observations and analyse the total of 16 years of timing data for this source. The new data uncover an ongoing evolution of the spin-down rate, thereby allowing us to exclude permanent changes in the external or internal torque as a standalone cause of the peculiar features of the glitch recovery. Furthermore, no additional variations of the radio pulse profile are detected, strengthening the association of the previously observed transient emission features with the glitching activity. A self-consistent measurement of the braking index yields a value n ~= 2.7, indicating a trajectory in the $P{\rm -}\dot{P}$ plane inclined towards the magnetars. Such a potential evolutionary link might be strengthened by a, possibly permanent, reduction of ~15 per cent in n at the epoch of the 2007 glitch.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-05
    Description: New marine geophysical data recorded across the Tonga-Kermadec subduction zone are used to image deformation and seismic velocity structures of the forearc and Pacific Plate where the Louisville Ridge seamount chain subducts. Due to the obliquity of the Louisville Ridge to the trench and the fast 128 mm yr –1 south–southwest migration of the ridge-trench collision zone, post-, current and pre-seamount subduction deformation can be investigated between 23°S and 28°S. We combine our interpretations from the collision zone with previous results from the post- and pre-collision zones to define the along-arc variation in deformation due to seamount subduction. In the pre-collision zone the lower-trench slope is steep, the mid-trench slope has ~3-km-thick stratified sediments and gravitational collapse of the trench slope is associated with basal erosion by subducting horst and graben structures on the Pacific Plate. This collapse indicates that tectonic erosion is a normal process affecting this generally sediment starved subduction system. In the collision zone the trench-slope decreases compared to the north and south, and rotation of the forearc is manifest as a steep plate boundary fault and arcward dipping sediment in a 12-km-wide, ~2-km-deep mid-slope basin. A ~3 km step increase in depth of the middle and lower crustal isovelocity contours below the basin indicates the extent of crustal deformation on the trench slope. At the leading edge of the overriding plate, upper crustal P -wave velocities are ~4.0 km s –1 and indicate the trench fill material is of seamount origin. Osbourn Seamount on the outer rise has extensional faulting on its western slope and mass wasting of the seamount provides the low V p material to the trench. In the post-collision zone to the north, the trench slope is smooth, the trench is deep, and the crystalline crust thins at the leading edge of the overriding plate where V p is low, ~5.5 km s –1 . These characteristics are attributed to a greater degree of extensional collapse of the forearc in the wake of seamount subduction. The northern end of a seismic gap lies at the transition from the smooth lower-trench slope of the post-collision zone, to the block faulted and elevated lower-trench slope in the collision zone, suggesting a causative link between the collapse of the forearc and seismogenesis. Along the forearc, the transient effects of a north-to-south progression of ridge subduction are preserved in the geomorphology, whereas longer-term effects may be recorded in the ~80 km offset in trench strike at the collision zone itself.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-01-28
    Description: Tony Watts , who delivers the RAS Harold Jeffreys Lecture in February, on his passion for the Earth – and the Pacific Ocean in particular.
    Print ISSN: 1366-8781
    Electronic ISSN: 1468-4004
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...