ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (3)
  • 1
    Publication Date: 2019-11-21
    Description: Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-17
    Description: Plant responses to drought and heat stress have been extensively studied, whereas post-stress recovery, which is fundamental to understanding stress resilience, has received much less attention. Here, we present a conceptual stress-recovery framework with respect to hydraulic and metabolic functioning in woody plants. We further synthesize results from controlled experimental studies following heat or drought events and highlight underlying mechanisms that drive post-stress recovery. We find that the pace of recovery differs among physiological processes. Leaf water potential and abscisic acid concentration typically recover within few days upon rewetting, while leaf gas exchange-related variables lag behind. Under increased drought severity as indicated by a loss in xylem hydraulic conductance, the time for stomatal conductance recovery increases markedly. Following heat stress release, a similar delay in leaf gas exchange recovery has been observed, but the reasons are most likely a slow reversal of photosynthetic impairment and other temperature-related leaf damages, which typically manifest at temperatures above 40 °C. Based thereon, we suggest that recovery of gas exchange is fast following mild stress, while recovery is slow and reliant on the efficiency of repair and regrowth when stress results in functional impairment and damage to critical plant processes. We further propose that increasing stress severity, particular after critical stress levels have been reached, increases the carbon cost involved in reestablishing functionality. This concept can guide future experimental research and provides a base for modeling post-stress recovery of carbon and water relations in trees.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-07
    Description: Process-based models are increasingly applied for simulating long-term forest developments in order to capture climate change impacts and to investigate suitable management responses. Regarding dimensional development, however, allometric relations such as the height/diameter ratio, branch and coarse root fractions or the dependency of crown dimension on stem diameter often do not account for environmental influences. While this may be appropriate for even-aged, monospecific forests, serious biases can be expected if stand density or forest structure changes rapidly. Such events occur in particular when forests experience disturbances such as intensive thinning or during early development stages of planted or naturally regenerated trees. We therefore suggest a calculation of allometric relationships that depends primarily on neighbourhood competition. Respective equations have been implemented into a physiology-based ecosystem model that considers asymmetric competition by explicit simulation of resource acquisition and depletion per canopy layer. The new implementation has been tested at two sites in Germany where beech (Fagus sylvatica) saplings have either been planted below a shelterwood of old spruces (Picea abies) or grown under clear-cut conditions. We show that the modified model is able to realistically describe tree development in response to stand density changes and is able to represent regeneration growth beneath a gradually decreasing overstorey of mature trees. In particular, the model could represent the faster crown size development in saplings until full ground coverage is established and a faster height growth afterwards. The effect enhances leaf area and thus assimilation per tree and increases carbon availability for stem growth at early development stages. Finally, the necessity to consider dynamic allometric relations with respect to climate change impacts is discussed, and further improvements are suggested.
    Print ISSN: 0015-752X
    Electronic ISSN: 1464-3626
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...