ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-07-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-14
    Description: Although optimal, computing the moment tensor solution is not always a viable option for the calculation of the size of an earthquake, especially for small events (say, below M w 2.0). Here we show an alternative approach to the calculation of the moment-rate spectra of small earthquakes, and thus of their scalar moments, that uses a network-based calibration of crustal wave propagation. The method works best when applied to a relatively small crustal volume containing both the seismic sources and the recording sites. In this study we present the calibration of the crustal volume monitored by the High-Resolution Seismic Network (HRSN), along the San Andreas Fault (SAF) at Parkfield. After the quantification of the attenuation parameters within the crustal volume under investigation, we proceed to the spectral correction of the observed Fourier amplitude spectra for the 100 largest events in our data set. Multiple estimates of seismic moment for the all events (1811 events total) are obtained by calculating the ratio of rms-averaged spectral quantities based on the peak values of the ground velocity in the time domain, as they are observed in narrowband-filtered time-series. The mathematical operations allowing the described spectral ratios are obtained from Random Vibration Theory (RVT). Due to the optimal conditions of the HRSN, in terms of signal-to-noise ratios, our network-based calibration allows the accurate calculation of seismic moments down to M w 〈 0. However, because the HRSN is equipped only with borehole instruments, we define a frequency-dependent Generalized Free-Surface Effect (GFSE), to be used instead of the usual free-surface constant F = 2. Our spectral corrections at Parkfield need a different GFSE for each side of the SAF, which can be quantified by means of the analysis of synthetic seismograms. The importance of the GFSE of borehole instruments increases for decreasing earthquake's size because for smaller earthquakes the bandwidth available for our calculations is consistently shifted towards higher frequencies.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-11
    Description: The rapid detection and characterization of megathrust earthquakes is a difficult task given their large rupture zone and duration. These events produce very strong ground vibrations in the near field that can cause weak motion instruments to clip, and they are also capable of generating large-scale tsunamis. The 2011 M  9 Tohoku-oki earthquake that occurred offshore Japan is one member of a series of great earthquakes for which extended geophysical observations are available. Here, we test an automated scanning algorithm for great earthquakes using continuous very long-period (100–200 s) seismic records from K-NET strong-motion seismograms of the earthquake. By continuously performing the cross-correlation of data and Green's functions (GFs) in a moment tensor analysis, we show that the algorithm automatically detects, locates and determines source parameters including the moment magnitude and mechanism of the great Tohoku-oki earthquake within 8 min of its origin time. The method does not saturate. We also show that quasi-finite-source GFs, which take into account the effects of a finite-source, in a single-point source moment tensor algorithm better fit the data, especially in the near-field. We show that this technique allows the correct characterization of the earthquake using a limited number of stations. This can yield information usable for tsunami early warning.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-09
    Description: The 2010 March 4, Jia-Shian ( M w 6.3) earthquake in SW Taiwan caused moderate damage and no surface rupture was observed, reflecting a deep source that is relatively rare in western Taiwan. We develop finite-source models using a combination of seismic waveform (strong motion and broadband), Global Positioning System (GPS) and synthetic aperture radar interferometry (InSAR) data to understand the rupture process and slip distribution of this event. The rupture centroid source depth is 19 km based on a series of moment tensor solution tests with improved 1-D Green's functions. The preferred fault model strikes 322° and dips 27° to the NE and the mainshock is a thrust event with a small left-lateral component. The finite-source model shows a primary slip asperity that is about 20 km in diameter at a depth range from 22 to 13 km, with peak slip of 42.5 cm, a total scalar seismic moment of 3.25  x 10 18 N m ( M w 6.34) and with an average static stress drop of 0.24 MPa. The rupture velocity of this event is faster than the mid-crustal shear wave velocity in Taiwan, which suggests the possibility of a supershear event which has not been previously observed in Taiwan. Systematic resolution and sensitivity tests are performed to confirm the slip distribution, rupture velocity, the choice of weighting and smoothing for the joint inversions, and the consistency of the slip distribution. The first 24 hours of aftershocks appeared along the upper periphery of the main coseismic slip asperity. Both the mainshock and aftershocks are located in a transition zone where the depth of seismicity and an inferred regional basal décollement increases from central to southern Taiwan. The difference between the current orientation of plate convergence in Taiwan (120º) and the P axis of this event (052º) and nearby measurements of recent crustal strain directions (050° to 080°), as well as the relatively low static stress drop, suggest that the Jia-Shian event involves the reactivation of a deep and weak pre-existing NW–SE geological structure.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-26
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...