ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-27
    Description: We report the first infrared study of the low-energy (〈20 eV) electron-induced reactions of condensed methanol. Our goal is to simulate processes which occur when high-energy cosmic rays interact with interstellar and cometary ices, where methanol, a precursor of several prebiotic species, is relatively abundant. The interactions of high-energy radiation, such as cosmic rays ( E max  ~ 10 20  eV), with matter produce large numbers of low-energy secondary electrons, which are known to initiate radiolysis reactions in the condensed phase. Using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS), we have investigated low-energy (5–20 eV) and high-energy (~1000 eV) electron-induced reactions in condensed methanol (CH 3 OH). IRAS has the benefit that it does not require thermal processing prior to product detection. Using IRAS, we have found evidence for the formation of ethylene glycol (HOCH 2 CH 2 OH), formaldehyde (CH 2 O), dimethyl ether (CH 3 OCH 3 ), methane (CH 4 ), carbon dioxide (CO 2 ), carbon monoxide (CO), and the hydroxyl methyl radical ( · CH 2 OH) upon both low-energy and high-energy electron irradiation of condensed methanol at ~85 K. Additionally, TPD results, presented herein, are similar for methanol films irradiated with both 1000 eV and 20 eV electrons. These IRAS and TPD findings are qualitatively consistent with the hypothesis that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. Moreover, methoxymethanol (CH 3 OCH 2 OH) could serve as a tracer molecule for electron-induced reactions in the interstellar medium. The results of experiments such as ours may provide a fundamental understanding of how complex organic molecules are synthesized in cosmic ices.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-14
    Description: We use Spitzer observations of the rich population of asymptotic giant branch (AGB) stars in the Large Magellanic Cloud (LMC) to test models describing the internal structure and nucleosynthesis of the most massive of these stars, i.e. those with initial mass above ~4 M . To this aim, we compare Spitzer observations of LMC stars with the theoretical tracks of AGB models, calculated with two of the most popular evolution codes, that are known to differ in particular for the treatment of convection. Although the physical evolution of the two models are significantly different, the properties of dust formed in their winds are surprisingly similar, as is their position in the colour–colour and colour–magnitude diagrams obtained with the Spitzer bands. This model-independent result allows us to select a well-defined region in the ([3.6]–[4.5], [5.8]–[8.0]) plane, populated by AGB stars experiencing hot bottom burning, the progeny of stars with mass M  ~ 5.5 M . This result opens up an important test of the strength hot bottom burning using detailed near-IR ( H and K bands) spectroscopic analysis of the oxygen-rich, high-luminosity candidates found in the well-defined region of the colour–colour plane. This test is possible because the two stellar evolution codes we use predict very different results for the surface chemistry, and the C/O ratio in particular, owing to their treatment of convection in the envelope and of convective boundaries during third dredge-up. The differences in surface chemistry are most apparent when the model stars reach the phase with the largest infrared emission.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-30
    Description: We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour–magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1–1.25 M objects of metallicity Z  = 10 –3 and from 1.5–2.5 M stars with Z  = 2  x  10 –3 . Oxygen-rich stars constitute the majority of the sample (~65 per cent), mainly low-mass stars (〈2 M ) that produce a negligible amount of dust (≤10 –7 M yr –1 ). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ~6  x  10 –7 M yr –1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-27
    Description: The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf–Rayet stars, 3 H  ii regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-19
    Description: Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ~1.2–3.5  x  10 –7 M  yr –1 . We would naïvely expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3–2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-27
    Description: Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ~1.2–3.5  x  10 –7 M  yr –1 . We would naïvely expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3–2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-06
    Description: The stars in the Magellanic Clouds with the largest degree of obscuration are used to probe the highly uncertain physics of stars in the asymptotic giant branch (AGB) phase of evolution. Carbon stars in particular provide key information on the amount of third dredge-up and mass-loss. We use two independent stellar evolution codes to test how a different treatment of the physics affects the evolution on the AGB. The output from the two codes is used to determine the rates of dust formation in the circumstellar envelope, where the method used to determine the dust is the same for each case. The stars with the largest degree of obscuration in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are identified as the progeny of objects of initial mass 2.5–3 M and ~1.5 M , respectively. This difference in mass is motivated by the difference in the star formation histories of the two galaxies, and offers a simple explanation of the redder infrared colours of C-stars in the LMC compared to their counterparts in the SMC. The comparison with the Spitzer colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass fraction X ( C ) ~ 5  x  10 –3 must have been reached by stars of initial mass around 1.5 M . Our results confirm the necessity of adopting low-temperature opacities in stellar evolutionary models of AGB stars. These opacities allow the stars to obtain mass-loss rates high enough (10 –4 M yr –1 ) to produce the amount of dust needed to reproduce the Spitzer colours.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-20
    Description: The life cycle of dust in the interstellar medium is heavily influenced by outflows from asymptotic giant branch (AGB) and red supergiant (RSG) stars, a large fraction of which is contributed by a few very dusty sources. We compute the dust input to the Small Magellanic Cloud (SMC) by fitting the multi-epoch mid-infrared spectral energy distributions of AGB/RSG candidates with models from the Grid of RSG and AGB ModelS grid, allowing us to estimate the luminosities and dust-production rates (DPRs) of the entire population. By removing contaminants, we guarantee a high-quality data set with reliable DPRs and a complete inventory of the dustiest sources. We find a global AGB/RSG dust-injection rate of (1.3 ± 0.1) x 10 –6 M  yr –1 , in agreement with estimates derived from mid-infrared colours and excess fluxes. As in the Large Magellanic Cloud, a majority (66 per cent) of the dust arises from the extreme AGB stars, which comprise only 7 per cent of our sample. A handful of far-infrared sources, whose 24 μm fluxes exceed their 8 μm fluxes, dominate the dust input. Their inclusion boosts the global DPR by 1.5 x , making it necessary to determine whether they are AGB stars. Model assumptions, rather than missing data, are the major sources of uncertainty; depending on the choice of dust shell expansion speed and dust optical constants, the global DPR can be up to 10 times higher. Our results suggest a non-stellar origin for the SMC dust, barring as yet undiscovered evolved stars with very high DPRs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-10-19
    Description: Motivation: Recently, mapping studies of expression quantitative loci (eQTL) (where gene expression levels are viewed as quantitative traits) have provided insight into the biology of gene regulation. Bayesian methods provide natural modeling frameworks for analyzing eQTL studies, where information shared across markers and/or genes can increase the power to detect eQTLs. Bayesian approaches tend to be computationally demanding and require specialized software. As a result, most eQTL studies use univariate methods treating each gene independently, leading to suboptimal results. Results: We present a powerful, computationally optimized and free open-source R package, iBMQ. Our package implements a joint hierarchical Bayesian model where all genes and SNPs are modeled concurrently. Model parameters are estimated using a Markov chain Monte Carlo algorithm. The free and widely used openMP parallel library speeds up computation. Using a mouse cardiac dataset, we show that iBMQ improves the detection of large trans -eQTL hotspots compared with other state-of-the-art packages for eQTL analysis. Availability: The R-package iBMQ is available from the Bioconductor Web site at http://bioconductor.org and runs on Linux, Windows and MAC OS X. It is distributed under the Artistic Licence-2.0 terms. Contact: christian.deschepper@ircm.qc.ca or rgottard@fhcrc.org Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-24
    Description: We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope . We construct deep mid-infrared colour–magnitude diagrams for the resolved stellar populations within 3.5 arcmin of M32's centre, and identify those stars that exhibit infrared excess. Our data are dominated by a population of luminous, dust-producing stars on the asymptotic giant branch (AGB) and extend to approximately 3 mag below the AGB tip. We detect for the first time a sizeable population of ‘extreme’ AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 10 –7 M yr –1 , corresponding to a gas mass-loss rate of 1.5 10 –4 M yr –1 . These extreme stars may be indicative of an extended star formation epoch between 0.2 and 5 Gyr ago.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...