ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-04-15
    Description: SUMMARY We propose an innovative approach to mapping CMB topography from seismic P -wave traveltime inversions: instead of treating mantle velocity and CMB topography as independent parameters, as has been done so far, we account for their coupling by mantle flow, as formulated by Forte & Peltier. This approach rests on the assumption that P data are sufficiently sensitive to thermal heterogeneity, and that compositional heterogeneity, albeit important in localized regions of the mantle (e.g. within the D ″ region), is not sufficiently strong to govern the pattern of mantle-wide convection and hence the CMB topography. The resulting tomographic maps of CMB topography are physically sound, and they resolve the known discrepancy between images obtained from classic tomography on the basis of core-reflected and core-refracted seismic phases. Since the coefficients of mantle velocity structure are the only free parameters of the inversion, this joint tomography–geodynamics approach reduces the number of parameters; nevertheless the corresponding mantle models fit the seismic data as well as the purely seismic ones.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-21
    Description: SUMMARY One of the outstanding problems in modern geodynamics is the development of thermal convection models that are consistent with the present-day flow dynamics in the Earth’s mantle, in accord with seismic tomographic images of 3-D Earth structure, and that are also capable of providing a time-dependent evolution of the mantle thermal structure that is as ‘realistic’ (Earth-like) as possible. A successful realization of this objective would provide a realistic model of 3-D mantle convection that has optimal consistency with a wide suite of seismic, geodynamic and mineral physical constraints on mantle structure and thermodynamic properties. To address this challenge, we have constructed a time-dependent, compressible convection model in 3-D spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method. The novel feature of our numerical solutions is that the equations of conservation of mass and momentum are solved only once in terms of spectral Green’s functions. We initially focus on the theory and numerical methods employed to solve the equation of thermal energy conservation using the Green’s function solutions for the equation of motion, with special attention placed on the numerical accuracy and stability of the convection solutions. A particular concern is the verification of the global energy balance in the dissipative, compressible-mantle formulation we adopt. Such validation is essential because we then present geodynamically constrained convection solutions over billion-year timescales, starting from present-day seismically constrained thermal images of the mantle. The use of geodynamically constrained spectral Green’s functions facilitates the modelling of the dynamic impact on the mantle evolution of: (1) depth-dependent thermal conductivity profiles, (2) extreme variations of viscosity over depth and (3) different surface boundary conditions, in this case mobile surface plates and a rigid surface. The thermal interpretation of seismic tomography models does not provide a radial profile of the horizontally averaged temperature (i.e. the geotherm) in the mantle. One important goal of this study is to obtain a steady-state geotherm with boundary layers which satisfies energy balance of the system and provides the starting point for more realistic numerical simulations of the Earth’s evolution. We obtain surface heat flux in the range of Earth-like values : 37 TW for a rigid surface and 44 TW for a surface with tectonic plates coupled to the mantle flow. Also, our convection simulations deliver CMB heat flux that is on the high end of previously estimated values, namely 13 TW and 20 TW, for rigid and plate-like surface boundary conditions, respectively. We finally employ these two end-member surface boundary conditions to explore the very-long-time scale evolution of convection over billion-year time windows. These billion-year-scale simulations will allow us to determine the extent to which a ‘memory’ of the starting tomography-based thermal structure is preserved and hence to explore the longevity of the structures in the present-day mantle. The two surface boundary conditions, along with the geodynamically inferred radial viscosity profiles, yield steady-state convective flows that are dominated by long wavelengths throughout the lower mantle. The rigid-surface condition yields a spectrum of mantle heterogeneity dominated by spherical harmonic degree 3 and 4, and the plate-like surface condition yields a pattern dominated by degree 1. Our exploration of the time-dependence of the spatial heterogeneity shows that, for both types of surface boundary condition, deep-mantle hot upwellings resolved in the present-day tomography model are durable and stable features. These deeply rooted mantle plumes show remarkable longevity over very long geological time spans, mainly owing to the geodynamically inferred high viscosity in the lower mantle.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-22
    Description: SUMMARY We propose an innovative approach to mapping CMB topography from seismic P -wave traveltime inversions: instead of treating mantle velocity and CMB topography as independent parameters, as has been done so far, we account for their coupling by mantle flow, as formulated by Forte & Peltier. This approach rests on the assumption that P data are sufficiently sensitive to thermal heterogeneity, and that compositional heterogeneity, albeit important in localized regions of the mantle (e.g. within the D ″ region), is not sufficiently strong to govern the pattern of mantle-wide convection and hence the CMB topography. The resulting tomographic maps of CMB topography are physically sound, and they resolve the known discrepancy between images obtained from classic tomography on the basis of core-reflected and core-refracted seismic phases. Since the coefficients of mantle velocity structure are the only free parameters of the inversion, this joint tomography–geodynamics approach reduces the number of parameters; nevertheless the corresponding mantle models fit the seismic data as well as the purely seismic ones.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-02
    Description: SUMMARY The precession and obliquity frequencies of the Earth’s rotational motion are functions of the dynamic ellipticity of the Earth’s gravitational figure, and this connection has provided a novel bridge between studies of palaeoclimate and geodynamics. In particular, analyses of tuned climate proxy records have yielded bounds on the mean relative perturbation in dynamic ellipticity over both the last 3 Myr and 25 Myr that are less than ∼3 per cent of the non-hydrostatic component of the ellipticity. We demonstrate that this apparent consistency actually defines an important geophysical enigma. Over the last 3 Myr, changes in the Earth’s figure are likely dominated by ice age forcings—in this case, a small perturbation to dynamic ellipticity implies significant isostatic compensation of the ice-ocean surface mass loads and, hence, a relatively low mantle viscosity. In contrast, over the last 25 Myr, changes in the Earth’s long-wavelength gravitational form are likely dominated by mantle convective flow, and in this case, the small perturbation to dynamic ellipticity implies sluggish convection and a relatively high mantle viscosity. There are at least four possible routes to resolving this enigma: The viscosity in the Earth’s mantle is transient (i.e. dependent on the timescale of the applied forcing), tidal dissipation changed in a manner between the last 3 Myr and 25 Myr that was sufficient to resolve the issue, the observationally inferred bounds are unrealistically restrictive, or earth models exist in which the ice age and convection effects approximately cancel leading to no net perturbation. In this paper, we compute a suite of numerical predictions of ice age and convection-induced perturbations to the dynamic ellipticity to illustrate the enigma described above.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...