ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (28)
  • Oxford University Press  (28)
Sammlung
  • Artikel  (28)
Erscheinungszeitraum
Zeitschrift
  • 1
    Publikationsdatum: 2015-03-28
    Beschreibung: Fish have a complex self-defense mechanism against microbial invasion. Recently, l -lysine α-oxidases have been identified from a number of fish species as a novel type of antibacterial protein in the integument. These enzymes exhibit strict substrate specificity for l -lysine, but the underlying mechanisms and details of their catalytic properties remain unknown. In this study, a synthetic gene coding for Scomber japonicus l -lysine α-oxidase, originally termed AIP (for apoptosis-inducing protein), was expressed in Pichia pastoris , and the recombinant enzyme (rAIP) was purified and characterized. rAIP exhibited essentially the same substrate specificity as the native enzyme, catalyzing the oxidative deamination of l -lysine as an exclusive substrate. rAIP was N -glycosylated and remained active over a wide range of pH, with an optimal pH of 7.5. The enzyme was stable in the pH range from 4.5 to 10.0 and was thermally stable up to 60°C. A molecular modelling of rAIP and a comparative structure/sequence analysis with homologous enzymes indicate that Asp 220 and Asp 320 are the substrate-binding residues that are likely to confer exclusive substrate specificity for l -lysine on the fish enzymes.
    Print ISSN: 0021-924X
    Digitale ISSN: 1756-2651
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-01-23
    Beschreibung: Butanol is an attractive alternative energy fuel owing to several advantages over ethanol. Among the microbial hosts for biobutanol production, yeast Saccharomyces cerevisiae has a great potential as a microbial host due to its powerful genetic tools, a history of successful industrial use, and its inherent tolerance to higher alcohols. Butanol production by S. cerevisiae was first attempted by transferring the 1-butanol-producing metabolic pathway from native microorganisms or using the endogenous Ehrlich pathway for isobutanol synthesis. Utilizing alternative enzymes with higher activity, eliminating competitive pathways, and maintaining cofactor balance achieved significant improvements in butanol production. Meeting future challenges, such as enhancing butanol tolerance and implementing a comprehensive strategy by high-throughput screening, would further elevate the biobutanol-producing ability of S. cerevisiae toward an ideal microbial cell factory exhibiting high productivity of biobutanol.
    Print ISSN: 0378-1097
    Digitale ISSN: 1574-6968
    Thema: Biologie
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Oxford University Press
    Publikationsdatum: 2012-07-17
    Beschreibung: Nitrogen (N) retranslocation within tree canopies has been intensively studied and assumed to function as a one-way process (e.g., from older to newer leaves). However, recent studies have found that both N output and input occur in individual leaves, suggesting that ‘gross’ N retranslocation exists behind ‘net’ N retranslocation. In the present study, the amount and direction of gross N retranslocation within a canopy of deciduous oak Quercus serrata Thunb. ex. Murray saplings were investigated. Labeling was conducted with leaves of Q. serrata saplings cultivated under conditions of low-N (LN) or high-N (HN) fertility. Subsequently, N movement within the canopy was traced. Leaves at two different positions in the canopy (top and lateral) were labeled to determine the direction of gross N retranslocation. To detect seasonal differences, the leaf-labeling experiment was conducted twice during the early and late phases of the growing season. In addition, to compare the quantitative importance of gross N retranslocation and root N uptake, the latter was determined by labeling Q. serrata roots. The N-labeling experiment revealed gross N retranslocation among leaves, i.e., from top to lateral, lateral to top and lateral to lateral positions. Gross N retranslocation was quantitatively more important than root uptake, especially for plants cultivated at LN fertility. Season also affected the amount of gross N retranslocation, and these effects differed between LN and HN fertilities. These findings suggest that N allocation within a canopy is controlled dynamically by both gross N output and input. The mechanisms controlling gross N output and input likely function as key determinants of N allocation within a tree canopy.
    Print ISSN: 0829-318X
    Digitale ISSN: 1758-4469
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2012-04-27
    Beschreibung: The budding yeast, Saccharomyces cerevisiae , is an attractive host for studying G protein-coupled receptors (GPCRs). We developed a system in which a peptide ligand specific for GPCR is displayed on yeast plasma membrane. The model system described here is based on yeast plasma membrane display of an analogue of α-factor, which is a peptide ligand for Ste2p, the GPCR that activates the yeast pheromone response pathway. α-Factor analogues, containing linkers of varying lengths and produced in yeast cells, became attached to the cell plasma membrane by linking to the glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein Yps1p. We were able to demonstrate that an optimized α-factor analogue activated the pheromone response pathway in S. cerevisiae , as assessed by a fluorescent reporter assay. Furthermore, it was shown that linker length strongly influenced signalling pathway activation. To our knowledge, this is the first report documenting functional signalling by a plasma membrane-displayed ligand in S. cerevisiae .
    Print ISSN: 0021-924X
    Digitale ISSN: 1756-2651
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2013-10-12
    Beschreibung: Sigma factor is a subunit of plastid-encoded RNA polymerase that regulates the transcription of plastid-encoded genes by recognizing a set of promoters. Sigma factors have increased in copy number and have diversified during the evolution of land plants, but details of this process remain unknown. Liverworts represent the basal group of embryophytes and are expected to retain the ancestral features of land plants. In liverwort ( Marchantia polymorpha L.), we isolated and characterized a T-DNA-tagged mutant ( Mpsig1 ) of sigma factor 1 ( MpSIG1 ). The mutant did not show any visible phenotypes, implying that MpSIG1 function is redundant with that of other sigma factors. However, quantitative reverse-transcription polymerase chain reaction and RNA gel blot analysis revealed that genes related to photosynthesis were downregulated, resulting in the minor reduction of some protein complexes. The transcript levels of genes clustered in the petL , psaA , psbB , psbK , and psbE operons of liverwort were lower than those in the wild type, a result similar to that in the SIG1 defective mutant in rice ( Oryza sativa ). Overexpression analysis revealed primitive functional divergence between the SIG1 and SIG2 proteins in bryophytes, whereas these proteins still retain functional redundancy. We also discovered that the predominant sigma factor for ndhF mRNA expression has been diversified in liverwort, Arabidopsis ( Arabidopsis thaliana ), and rice. Our study shows the ancestral function of SIG1 and the process of functional partitioning (subfunctionalization) of sigma factors during the evolution of land plants.
    Digitale ISSN: 1759-6653
    Thema: Biologie
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2014-03-23
    Beschreibung: Chlorophylls (Chls) play pivotal roles in energy absorption and transduction and also in charge separation in reaction centers in all photosynthetic organisms. In Chl biosynthesis steps, only a step for the enzymatic reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is mediated by both nuclear- and chloroplast-encoded genes in land plants. Many plants encode the genes for light-dependent Pchlide reductase (LPOR) and light-independent Pchlide reductase (DPOR) in the nucleus and chloroplast genome, respectively. During the diversification of land plants, the reduction step of Pchlide to Chlide has become solely dependent on LPOR, and the genes for DPOR have been lost from chloroplast genome. It remains unclear why DPOR persists in some land plants, how they were eliminated from chloroplast genomes during the diversification of land plants, and under what environmental conditions DPOR was required. We demonstrate that DPOR is functional in liverwort ( Marchantia polymorpha L.) and plays an important role in Chl biosynthesis. Having established a plastid transformation system in liverwort, we disrupted chl B, which encodes a subunit of DPOR in the M . polymorpha chloroplast genome. Morphological and Chl content analysis of a chl B mutant grown under different photoperiods revealed that DPOR is particularly required for Chl biosynthesis under short-day conditions. Our findings suggest that an environmental condition in the form of photoperiod is an important factor that determines the loss or retention of chloroplast-encoded genes mediating Pchlide reduction to Chlide.
    Digitale ISSN: 1759-6653
    Thema: Biologie
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-07-28
    Beschreibung: Mutations of the leucine-rich glioma-inactivated 1 ( LGI1 ) gene cause an autosomal dominant partial epilepsy with auditory features also known as autosomal-dominant lateral temporal lobe epilepsy. LGI1 is also the main antigen present in sera and cerebrospinal fluids of patients with limbic encephalitis and seizures, highlighting its importance in a spectrum of epileptic disorders. LGI1 encodes a neuronal secreted protein, whose brain function is still poorly understood. Here, we generated, by ENU ( N -ethyl- N -nitrosourea) mutagenesis, Lgi1 -mutant rats carrying a missense mutation (L385R). We found that the L385R mutation prevents the secretion of Lgi1 protein by COS7 transfected cells. However, the L385R-Lgi1 protein was found at low levels in the brains and cultured neurons of Lgi1 -mutant rats, suggesting that mutant protein may be destabilized in vivo . Studies on the behavioral phenotype and intracranial electroencephalographic signals from Lgi1 -mutant rats recalled several features of the human genetic disorder. We show that homozygous Lgi1 -mutant rats ( Lgi1 L385R/L385R ) generated early-onset spontaneous epileptic seizures from P10 and died prematurely. Heterozygous Lgi1 -mutant rats ( Lgi1 +/L385R ) were more susceptible to sound-induced, generalized tonic-clonic seizures than control rats. Audiogenic seizures were suppressed by antiepileptic drugs such as carbamazepine, phenytoin and levetiracetam, which are commonly used to treat partial seizures, but not by the prototypic absence seizure drug, ethosuximide. Our findings provide the first rat model with a missense mutation in Lgi1 gene, an original model complementary to knockout mice. This study revealed that LGI1 disease-causing missense mutations might cause a depletion of the protein in neurons, and not only a failure of Lgi1 secretion.
    Print ISSN: 0964-6906
    Digitale ISSN: 1460-2083
    Thema: Biologie , Medizin
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2014-06-28
    Beschreibung: Glioblastoma is characterized by marked invasiveness, but little is known about the mechanism of invasion in glioblastoma cells. Wnts are secreted ligands that regulate cell proliferation, differentiation, motility and fate at various developmental stages. In adults, misregulation of the Wnt pathway is associated with several diseases. Recently, we reported that Wnt-5a was overexpressed and correlated with cell motility and infiltrative activity through the regulation of matrix metalloproteinase (MMP)-2 in glioma-derived cells. Although several receptors for Wnt-5a were identified, the receptors of Wnt-5a that mediate cellular responses of glioma were not clearly identified. Knockdown of receptor-like tyrosine kinase (Ryk) but not that of Ror2 suppressed the activity of MMP-2 and Wnt-5a-dependent invasive activity in glioma cells. These results suggest that Ryk is important for the Wnt-5a-dependent induction of MMP-2 and invasive activity in glioma-derived cells and that Ryk might have a novel patho-physiological function in adult cancer invasion. Furthermore, not only the expression of Wnt-5a but also that of Frizzled (Fz)-2 and Ryk was correlated with the WHO histological grade in 38 human glioma tissues. Taking these findings together, Fz-2 and Ryk could be therapeutic or pharmacological target molecules for the control of Wnt-5a-dependent invasion of human glioma in the near future.
    Print ISSN: 0021-924X
    Digitale ISSN: 1756-2651
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2012-12-06
    Beschreibung: We have previously shown that polymerization of cytochrome c (cyt c ) occurs by successively domain swapping its C-terminal α-helix in the presence of ethanol. However, the factors that govern the conversion process of monomers to domain-swapped oligomers remain unknown. We found that oligomeric cyt c is produced in the presence of ethanol and the oligomers precipitate due to low solubility. The optical absorption spectra revealed that in the presence of 30–40% ethanol, the Met-heme coordination in cyt c is dissociated. However, according to circular dichroism and small-angle X-ray scattering measurements, the α-helical structure of cyt c is maintained in solution with a little perturbation and the radius of gyration increases slightly but without dissociation of the C-terminal α-helix from the rest of the protein by the addition of ethanol. Solid-state nuclear magnetic resonance spectra showed that oligomeric cyt c in the precipitate also retains most of its α-helical structure. In the transmission electron microscopic image of the precipitate obtained by the addition of ethanol to cyt c , spherical particles with diameters of about 3 nm were detected. These results indicate that oligomeric cyt c forms through a state with the Met80 region locally unfolded, while maintaining the secondary structure, possibly an open monomer.
    Print ISSN: 0021-924X
    Digitale ISSN: 1756-2651
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2014-02-27
    Digitale ISSN: 1759-6653
    Thema: Biologie
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...