ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (3)
  • Oxford University Press  (3)
  • 1
    Publikationsdatum: 2012-09-08
    Beschreibung: Motivation: A current challenge in understanding cancer processes is to pinpoint which mutations influence the onset and progression of disease. Toward this goal, we describe a method called PARADIGM-SHIFT that can predict whether a mutational event is neutral, gain-or loss-of-function in a tumor sample. The method uses a belief-propagation algorithm to infer gene activity from gene expression and copy number data in the context of a set of pathway interactions. Results: The method was found to be both sensitive and specific on a set of positive and negative controls for multiple cancers for which pathway information was available. Application to the Cancer Genome Atlas glioblastoma, ovarian and lung squamous cancer datasets revealed several novel mutations with predicted high impact including several genes mutated at low frequency suggesting the approach will be complementary to current approaches that rely on the prevalence of events to reach statistical significance. Availability: All source code is available at the github repository http:github.org/paradigmshift . Contact: jstuart@soe.ucsc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Digitale ISSN: 1460-2059
    Thema: Biologie , Informatik , Medizin
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-10-19
    Beschreibung: Motivation: Identifying the cellular wiring that connects genomic perturbations to transcriptional changes in cancer is essential to gain a mechanistic understanding of disease initiation, progression and ultimately to predict drug response. We have developed a method called Tied Diffusion Through Interacting Events (TieDIE) that uses a network diffusion approach to connect genomic perturbations to gene expression changes characteristic of cancer subtypes. The method computes a subnetwork of protein–protein interactions, predicted transcription factor-to-target connections and curated interactions from literature that connects genomic and transcriptomic perturbations. Results: Application of TieDIE to The Cancer Genome Atlas and a breast cancer cell line dataset identified key signaling pathways, with examples impinging on MYC activity. Interlinking genes are predicted to correspond to essential components of cancer signaling and may provide a mechanistic explanation of tumor character and suggest subtype-specific drug targets. Availability: Software is available from the Stuart lab’s wiki: https://sysbiowiki.soe.ucsc.edu/tiedie . Contact: jstuart@ucsc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Digitale ISSN: 1460-2059
    Thema: Biologie , Informatik , Medizin
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-06-23
    Beschreibung: High-throughput data sets such as genome-wide protein–protein interactions, protein–DNA interactions and gene expression data have been published for several model systems, especially for human cancer samples. The University of California, Santa Cruz (UCSC) Interaction Browser ( http://sysbio.soe.ucsc.edu/nets ) is an online tool for biologists to view high-throughput data sets simultaneously for the analysis of functional relationships between biological entities. Users can access several public interaction networks and functional genomics data sets through the portal as well as upload their own networks and data sets for analysis. Users can navigate through correlative relationships for focused sets of genes belonging to biological pathways using a standard web browser. Using a new visual modality called the CircleMap, multiple ‘omics’ data sets can be viewed simultaneously within the context of curated, predicted, directed and undirected regulatory interactions. The Interaction Browser provides an integrative viewing of biological networks based on the consensus of many observations about genes and their products, which may provide new insights about normal and disease processes not obvious from any isolated data set.
    Print ISSN: 0305-1048
    Digitale ISSN: 1362-4962
    Thema: Biologie
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...