ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Inst. and Methods in Physics Research, B 62 (1992), S. 331-337 
    ISSN: 0168-583X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Inst. and Methods in Physics Research, B 85 (1994), S. 159-166 
    ISSN: 0168-583X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-20
    Description: We report the alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE (Evolution and Assembly of GaLaxies and their Environments) and cosmo-OWLS (OverWhelmingly Large Simulations) simulations. The combination of these state-of-the-art hydrodynamical cosmological simulations enables us to span four orders of magnitude in halo mass (11 ≤ log 10 ( M 200 /[ h –1 M ]) ≤ 15), a wide radial range (–2.3 ≤ log 10 ( r /[ h –1 Mpc]) ≤ 1.3) and redshifts 0 ≤  z  ≤ 1. The shape parameters of the dark matter, stellar and hot gas distributions follow qualitatively similar trends: they become more aspherical (and triaxial) with increasing halo mass, radius, and redshift. We measure the misalignment of the baryonic components (hot gas and stars) of galaxies with their host halo as a function of halo mass, radius, redshift, and galaxy type (centrals versus satellites and early- versus late-type). Overall, galaxies align well with the local distribution of the total (mostly dark) matter. However, the stellar distributions on galactic scales exhibit a median misalignment of about 45–50 deg with respect to their host haloes. This misalignment is reduced to 25–30 deg in the most massive haloes (13 ≤ log 10 ( M 200 /[ h –1 M ]) ≤ 15). Half of the disc galaxies in the EAGLE simulations have a misalignment angle with respect to their host haloes larger than 40 deg. We present fitting functions and tabulated values for the probability distribution of galaxy–halo misalignment to enable a straightforward inclusion of our results into models of galaxy formations based on purely collisionless N -body simulations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-26
    Description: We describe simple useful toy models for key processes of galaxy formation in its most active phase, at z  〉 1, and test the approximate expressions against the typical behaviour in a suite of high-resolution hydro-cosmological simulations of massive galaxies at z=4–1 . We address in particular the evolution of (a) the total mass inflow rate from the cosmic web into galactic haloes based on the EPS approximation, (b) the penetration of baryonic streams into the inner galaxy, (c) the disc size, (d) the implied steady-state gas content and star formation rate (SFR) in the galaxy subject to mass conservation and a universal star formation law, (e) the inflow rate within the disc to a central bulge and black hole as derived using energy conservation and self-regulated Q  ~ 1 violent disc instability (VDI) and (f) the implied steady state in the disc and bulge. The toy models provide useful approximations for the behaviour of the simulated galaxies. We find that (a) the inflow rate is proportional to mass and to (1 +  z ) 5/2 , (b) the penetration to the inner halo is ~50 per cent at z=4–2 , (c) the disc radius is ~5 per cent of the virial radius, (d) the galaxies reach a steady state with the SFR following the accretion rate into the galaxy, (e) there is an intense gas inflow through the disc, comparable to the SFR, following the predictions of VDI and (f) the galaxies approach a steady state with the bulge mass comparable to the disc mass, where the draining of gas by SFR, outflows and disc inflows is replenished by fresh accretion. Given the agreement with simulations, these toy models are useful for understanding the complex phenomena in simple terms and for back-of-the-envelope predictions.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-08
    Description: The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ~1400 spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly survey. We detect a highly significant signal (signal-to-noise-ratio ~120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M  ~ 10 13 –10 14.5 h –1 M . We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the brightest cluster galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r -band luminosity as a power law with slope 1.16 ± 0.13 (1) and with the group velocity dispersion as a power law with slope 1.89 ± 0.27 (1). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations project, ruling out models without AGN feedback.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-19
    Description: We report results for the alignments of galaxies in the EAGLE and cosmo-OWLS hydrodynamical cosmological simulations as a function of galaxy separation (–1 ≤ log 10 ( r /[ h –1 Mpc]) ≤ 2) and halo mass (10.7 ≤ log 10 ( M 200 /[ h –1 M ]) ≤ 15). We focus on two classes of alignments: the orientations of galaxies with respect to either the directions to, or the orientations of, surrounding galaxies. We find that the strength of the alignment is a strongly decreasing function of the distance between galaxies. For galaxies hosted by the most massive haloes in our simulations the alignment can remain significant up to ~100 Mpc. Galaxies hosted by more massive haloes show stronger alignment. At a fixed halo mass, more aspherical or prolate galaxies exhibit stronger alignments. The spatial distribution of satellites is anisotropic and significantly aligned with the major axis of the main host halo. The major axes of satellite galaxies, when all stars are considered, are preferentially aligned towards the centre of the main host halo. The predicted projected direction–orientation alignment, g+ ( r p ), is in broad agreement with recent observations. We find that the orientation–orientation alignment is weaker than the orientation–direction alignment on all scales. Overall, the strength of galaxy alignments depends strongly on the subset of stars that are used to measure the orientations of galaxies and it is always weaker than the alignment of dark matter haloes. Thus, alignment models that use halo orientation as a direct proxy for galaxy orientation overestimate the impact of intrinsic galaxy alignments.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-12
    Description: We study the stellar-to-halo mass relation of central galaxies in the range 9.7 〈 log 10 ( M * / h – 2 M ) 〈 11.7 and z  〈 0.4, obtained from a combined analysis of the Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. We use ~100 deg 2 of KiDS data to study the lensing signal around galaxies for which spectroscopic redshifts and stellar masses were determined by GAMA. We show that lensing alone results in poor constraints on the stellar-to-halo mass relation due to a degeneracy between the satellite fraction and the halo mass, which is lifted when we simultaneously fit the stellar mass function. At M * 〉 5 x 10 10 h – 2 M , the stellar mass increases with halo mass as ${\sim }M_{\rm h}^{0.25}$ . The ratio of dark matter to stellar mass has a minimum at a halo mass of 8  x  10 11 h –1 M with a value of $M_{\rm h}/M_{\ast }=56_{-10}^{+16}$ [ h ]. We also use the GAMA group catalogue to select centrals and satellites in groups with five or more members, which trace regions in space where the local matter density is higher than average, and determine for the first time the stellar-to-halo mass relation in these denser environments. We find no significant differences compared to the relation from the full sample, which suggests that the stellar-to-halo mass relation does not vary strongly with local density. Furthermore, we find that the stellar-to-halo mass relation of central galaxies can also be obtained by modelling the lensing signal and stellar mass function of satellite galaxies only, which shows that the assumptions to model the satellite contribution in the halo model do not significantly bias the stellar-to-halo mass relation. Finally, we show that the combination of weak lensing with the stellar mass function can be used to test the purity of group catalogues.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-02
    Description: We simultaneously constrain cosmology and galaxy bias using measurements of galaxy abundances, galaxy clustering and galaxy–galaxy lensing taken from the Sloan Digital Sky Survey. We use the conditional luminosity function (which describes the halo occupation statistics as a function of galaxy luminosity) combined with the halo model (which describes the non-linear matter field in terms of its halo building blocks) to describe the galaxy–dark matter connection. We explicitly account for residual redshift-space distortions in the projected galaxy–galaxy correlation functions, and marginalize over uncertainties in the scale dependence of the halo bias and the detailed structure of dark matter haloes. Under the assumption of a spatially flat, vanilla cold dark matter (CDM) cosmology, we focus on constraining the matter density, m , and the normalization of the matter power spectrum, 8 , and we adopt 7-year Wilkinson Microwave Anisotropy Probe ( WMAP 7) priors for the spectral index, n , the Hubble parameter, h , and the baryon density, b . We obtain that m = 0.278 + 0.023 – 0.026 and 8 = 0.763 + 0.064 – 0.049 (95 per cent CL). These results are robust to uncertainties in the radial number density distribution of satellite galaxies, while allowing for non-Poisson satellite occupation distributions results in a slightly lower value for 8 (0.744 + 0.056 – 0.047 ). These constraints are in excellent agreement (at the 1 level) with the cosmic microwave background constraints from WMAP . This demonstrates that the use of a realistic and accurate model for galaxy bias, down to the smallest non-linear scales currently observed in galaxy surveys, leads to results perfectly consistent with the vanilla CDM cosmology.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-03-02
    Description: We quantify the accuracy with which the cosmological parameters characterizing the energy density of matter ( m ), the amplitude of the power spectrum of matter fluctuations ( 8 ), the energy density of neutrinos ( ) and the dark energy equation of state ( w 0 ) can be constrained using data from large galaxy redshift surveys. We advocate a joint analysis of the abundance of galaxies, galaxy clustering, and the galaxy–galaxy weak-lensing signal in order to simultaneously constrain the halo occupation statistics (i.e. galaxy bias) and the cosmological parameters of interest. We parametrize the halo occupation distribution of galaxies in terms of the conditional luminosity function and use the analytical framework of the halo model described in Cacciato et al. (our companion Paper III), to predict the relevant observables. By performing a Fisher matrix analysis, we show that a joint analysis of these observables, even with the precision with which they are currently measured from the Sloan Digital Sky Survey, can be used to obtain tight constraints on the cosmological parameters, fully marginalized over uncertainties in galaxy bias. We demonstrate that the cosmological constraints from such an analysis are nearly uncorrelated with the halo occupation distribution constraints, thus, minimizing the systematic impact of any imperfections in modelling the halo occupation statistics on the cosmological constraints. In fact, we demonstrate that the constraints from such an analysis are both complementary to and competitive with existing constraints on these parameters from a number of other techniques, such as cluster abundances, cosmic shear and/or baryon acoustic oscillations, thus paving the way to test the concordance cosmological model.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-03-02
    Description: We present a new method that simultaneously solves for cosmology and galaxy bias on non-linear scales. The method uses the halo model to analytically describe the (non-linear) matter distribution, and the conditional luminosity function (CLF) to specify the halo occupation statistics. For a given choice of cosmological parameters, this model can be used to predict the galaxy luminosity function, as well as the two-point correlation functions of galaxies, and the galaxy–galaxy lensing signal, both as a function of scale and luminosity. These observables have been reliably measured from the Sloan Digital Sky Survey. In this paper, the first in a series, we present the detailed, analytical model, which we test against mock galaxy redshift surveys constructed from high-resolution numerical N -body simulations. We demonstrate that our model, which includes scale dependence of the halo bias and a proper treatment of halo exclusion, reproduces the three-dimensional galaxy–galaxy correlation and the galaxy–matter cross-correlation (which can be projected to predict the observables) with an accuracy better than 10 (in most cases 5) per cent. Ignoring either of these effects, as is often done, results in systematic errors that easily exceed 40 per cent on scales of ~ 1 h – 1 Mpc, where the data are typically most accurate. Finally, since the projected correlation functions of galaxies are never obtained by integrating the redshift-space correlation function along the line of sight out to infinity, simply because the data only cover a finite volume, they are still affected by residual redshift-space distortions (RRSDs). Ignoring these, as done in numerous studies in the past, results in systematic errors that easily exceed 20 per cent on large scales ( r p 10 h – 1 Mpc). We show that it is fairly straightforward to correct for these RRSDs, to an accuracy better than ~ 2 per cent, using a mildly modified version of the linear Kaiser formalism.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...