ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-23
    Description: Aims Understanding the relationships among disturbance, invasion and species change is essential for effective management of many systems. We investigated relationships among fire history, invasion by a native tree species, Allocasuarina huegeliana , and diversity change to understand the potential drivers of plant community alteration in a complex and biodiverse system. Methods We used plant species surveys from 1983 and 2011 to quantify species loss/gain and thence compositional changes. Additionally, we surveyed population densities of the invasive species and collated long-term fire history data for each site. General linear models and non-parametric models were used to assess the strength of relationships between the three variables of interest. Important Findings Within the last 30 years, ~11% of the plant species richness was lost from the reserve. At an individual site level, we found only a 4% average decrease in overall plant species richness, but large species losses and gains that imply considerable compositional shifts. Though such shifts might be expected over 30 years, many of the gained species were common, potentially opportunistic species, while those lost were often locally rare woody perennials. In addition, gained species tended to be expanding their recorded range westward suggesting that they may be responding to the regional drying climate. The relationship between invasion density and species loss was strong over all spatial scales. We identified a potential state change to dominance by the native invasive particularly as high densities prevented species gain at the site scale. In these extreme cases of high invasive density and high biodiversity loss, we argue that there may be a need to directly address the expanding native population.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Ocean-bottom seismograph and multichannel streamer wide-angle seismic data are jointly analysed and compared with reflection images, bathymetric maps and potential field data, to reveal the detailed structure of layer 2 of the oceanic crust formed at the intermediate spreading Costa Rica Rift (CRR). Separate modelling of each wide-angle data set independently reveals a gradual increase in 〈span〉P〈/span〉-wave velocity with distance (hence crustal age) from the ridge axis, with a model derived from their joint inversion, in turn, displaying a pattern of shorter-wavelength structural complexity in addition to a background flow-line trend. Normalizing against a ridge-located reference velocity–depth model reveals that, off-axis, velocity perturbations are correlated with trends in basement roughness and uplift; regions of rougher and uplifted basement correlate with slower layer 2 velocity, 〈0.5 km s〈sup〉−1〈/sup〉 faster than at the ridge axis, and thinner sediment cover, while smoother basement and locations where sediment cover forms a continuous seal over the oceanic basement, are mirrored by regions of relatively higher velocity, 1.0–1.4 km s〈sup〉−1〈/sup〉 faster than at the CRR. These velocity variations are interpreted to reflect periodic changes in the degree of magma supply to the ridge axis.Using a combination of global and shipboard magnetic data, we derive a spreading history model for the CRR which shows that, for the past 5 Ma, spreading has been asymmetric. Comparing the seismic model structure with variations in full spreading rate over this period, reveals a correlation between periods of slower spreading and slower layer 2 velocity, basement roughness and uplift, and faster spreading, higher velocity and smoother basement structure. Zones of slower velocity also correlate with lows in the residual mantle Bouguer anomaly, interpreted as most likely reflecting corresponding regions of lower density in the lower crust or upper lithospheric mantle. Using ODP borehole 504B as ground-truth, we show that periods of faster spreading are associated with phases of magmatic accretion, interspersed by phases of increased asymmetric tectonic extension that likely facilitates fluid flow to the deeper crust and results in metamorphic alteration, manifest as the modelled density anomalies.Overall, our study shows that the mode of CRR crustal formation is sensitive to relatively small changes in full spreading rate within the range of 50–72 mm yr〈sup〉−1〈/sup〉, that tips the balance between magmatic and magma-dominated crustal formation and/or tectonic stretching, as characterized by significant variation in the fabric and physical properties of layer 2. We further hypothesize that this inherited structure has a direct influence on the subsequent evolution of the crust through secondary alteration. We conclude that descriptive phrases like ‘ocean crust formed at an intermediate-spreading rate’ should no longer be used to describe an actual crustal formation process or resulting crustal structure as, over the full range of intermediate spreading rates, a fine tipping-point dictates an episodic transition between primarily magmatic accretion and magma-dominated crustal formation coupled with enhanced faulting, with their asymmetry recorded in either ridge flank.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-11
    Description: This paper reports an approach for estimating thinning-induced changes in N and P budgets in jarrah ( Eucalyptus marginata ) forest in the Wungong catchment of Western Australia. Two thinning strategies, herbicide injection and selective removal, were tested and nutrient budgets were constructed for soil, litter and tree biomass. The effects of thinning were evaluated based on pre-thinning biomass allocation and on reductions in biomass after thinning. Tree above ground biomass was 399 ton ha -1 , from which the selective logging removed 18.7 ton ha -1 or 5 per cent of the N and 4 per cent of the P. Thinning residues from stem injection of herbicide contained fivefold more nutrients than the ground litter. Top soil was the primary nutrient store but only 1–2 per cent of total N and P were in available forms. In contrast, fine litter materials in thinned sites may release 4.8–5.7 kg P ha –1 via leaching over the rainy months. Cut branches and dead stems stored 176 kg N ha –1 and 7.0 kg P ha –1 but would decompose over many decades. Our results indicate that both thinning strategies would increase nutrient cycling in the forest, while the implications of thinning-induced nutrient supply for the growth of remaining vegetation, understorey competition and ecosystem health need further examination.
    Print ISSN: 0015-752X
    Electronic ISSN: 1464-3626
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Ocean-bottom seismograph and multichannel streamer wide-angle seismic data are jointly analysed and compared with reflection images, bathymetric maps and potential field data, to reveal the detailed structure of layer 2 of the oceanic crust formed at the intermediate spreading Costa Rica Rift (CRR). Separate modelling of each wide-angle dataset independently reveals a gradual increase in P-wave velocity with distance (hence crustal age) from the ridge axis, with a model derived from their joint inversion, in turn, displaying a pattern of shorter-wavelength structural complexity in addition to a background flow-line trend. Normalising against a ridge-located reference velocity-depth model reveals that, off-axis, velocity perturbations are correlated with trends in basement roughness and uplift; regions of rougher and uplifted basement correlate with slower layer 2 velocity, 〈 0.5 km s〈sup〉−1〈/sup〉 faster than at the ridge axis, and thinner sediment cover, while smoother basement and locations where sediment cover forms a continuous seal over the oceanic basement, are mirrored by regions of relatively higher velocity, 1.0–1.4 km s〈sup〉−1〈/sup〉 faster than at the CRR. These velocity variations are interpreted to reflect periodic changes in the degree of magma supply to the ridge axis.Using a combination of global and shipboard magnetic data, we derive a spreading history model for the CRR which shows that, for the past 5 Ma, spreading has been asymmetric. Comparing the seismic model structure with variations in full spreading rate over this period, reveals a correlation between periods of slower spreading and slower layer 2 velocity, basement roughness and uplift, and faster spreading, higher velocity and smoother basement structure. Zones of slower velocity also correlate with lows in the residual mantle Bouguer anomaly, interpreted as most likely reflecting corresponding regions of lower density in the lower crust or upper lithospheric mantle. Using ODP borehole 504B as ground-truth, we show that periods of faster spreading are associated with phases of magmatic accretion, interspersed by phases of increased asymmetric tectonic extension that likely facilitates fluid flow to the deeper crust and results in metamorphic alteration, manifest as the modelled density anomalies.Overall, our study shows that the mode of CRR crustal formation is sensitive to relatively small changes in full spreading rate within the range of 50–72 mm yr〈sup〉−1〈/sup〉, that tips the balance between magmatic and magma-dominated crustal formation and/or tectonic stretching, as characterised by significant variation in the fabric and physical properties of layer 2. We further hypothesise that this inherited structure has a direct influence on the subsequent evolution of the crust through secondary alteration. We conclude that descriptive phrases like ‘ocean crust formed at an intermediate-spreading rate’ should no longer be used to describe an actual crustal formation process or resulting crustal structure as, over the full range of intermediate spreading rates, a fine tipping-point dictates an episodic transition between primarily magmatic accretion and magma-dominated crustal formation coupled with enhanced faulting, with their asymmetry recorded in either ridge flank.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-23
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-05-01
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-12
    Description: The Deep Synoptic Array 10-dish prototype (DSA-10) is an instrument designed to detect and localize fast radio bursts with arcsecond accuracy in real time. Deployed at Owens Valley Radio Observatory, it consists of ten 4.5-m diameter dishes, equipped with a 250-MHz bandwidth dual polarization receiver, centred at 1.4 GHz. The 20 input signals are digitized and field programmable gate arrays are used to transform the data to the frequency domain and transmit it over ethernet. A series of computer servers buffer both raw data samples and perform a real time search for fast radio bursts on the incoherent sum of all inputs. If a pulse is detected, the raw data surrounding the pulse are written to disc for coherent processing and imaging. The prototype system was operational from 2017 June to 2018 February conducting a drift scan search. Giant pulses from the Crab Pulsar were used to test the detection and imaging pipelines. The 10-dish prototype system was brought online again in 2019 March, and will gradually be replaced with the new DSA-110, a 110-dish system, over the next 2 yr to improve sensitivity and localization accuracy.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2020-03-28
    Description: 3-D tomographic modelling of wide-angle seismic data, recorded at the intermediate-spreading Costa Rica Rift, has revealed a P-wave seismic velocity anomaly low located beneath a small overlapping spreading centre that forms a non-transform discontinuity at the ridge axis. This low velocity zone displays a maximum velocity anomaly relative to the ‘background’ ridge axis crustal structure of ∼0.5 km s−1, has lateral dimensions of ∼10 × 5 km, and extends to depths ≥2.5 km below the seabed, placing it within layer 2 of the oceanic crust. We interpret these observations as representing increased fracturing under enhanced tectonic stress associated with the opening of the overlapping spreading centre, that results in higher upper crustal bulk porosity and permeability. Evidence for ongoing magmatic accretion at the Costa Rica Rift ridge axis takes the form of an axial magma lens beneath the western ridge segment, and observations of hydrothermal plume activity and microearthquakes support the presence of an active fluid circulation system. We propose that fracture pathways associated with the low velocity zone may provide the system through which hydrothermal fluids circulate. These fluids cause rapid cooling of the adjacent ridge axis and any magma accumulations which may be present. The Costa Rica Rift exists at a tipping point between episodic phases of magmatic and tectonically enhanced spreading. The characteristics inherited from each spreading mode have been preserved in the crustal morphology off-axis for the past 7 Myr. Using potential field data, we contextualize our seismic observations of the axial ridge structure at the whole segment scale, and find that the proposed balance between magmatic and tectonically dominated spreading processes observed off-axis may also be apparent along-axis, and that the current larger-scale magma supply system at the Costa Rica Rift may be relatively weak. Based on all available geophysical observations, we suggest a model for the inter-relationships between magmatism, faulting and fluid circulation at the Costa Rica Rift across a range of scales, which may also be influenced by large lithosphere scale structural and/or thermal heterogeneity.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...