ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: We present a comprehensive major and trace element and Sr–Nd–Pb isotope dataset from the major volcanic units exposed on La Palma and show how geochemical and volcanic evolution can be linked to asthenospheric and lithospheric processes. Lavas from the northern shield (from Basal Complex to Taburiente to Bejenado volcanism, 3–4 Ma to 400 ka) become more alkalic and SiO2-undersaturated with decreasing age, but show little change in MgO-normalized trace element compositions. Their high (Nb,Ta)/U and Ba/Th but low La/Nb ratios suggest assimilation of amphibole, probably in the lithospheric mantle that was metasomatized by earlier melts. Lavas from the Cumbre Vieja unit (〈125 ka) in the southern half of La Palma are more incompatible-element enriched and probably formed through lower degrees of melting than those from the northern shield, which are nearly identical isotopically. Their Nb/U ratios are mostly within the range 47 ± 10, significantly below those of the earlier lavas. In 206Pb/204Pb versus 143Nd/144Nd, 208Pb/204Pb and 208Pb/206Pb isotope diagrams, the Basal Complex rocks and lavas from the adjacent El Hierro island form a separate trend compared with the younger subaerial La Palma lavas. Both groups share a common depleted end-member but require separate, enriched HIMU-like end-members, believed to be located within the asthenosphere. The temporal and spatial variations in the composition of La Palma and El Hierro lavas could be explained within the context of NE-directed plate motion over a zoned Canary plume. After La Palma moved away from the asthenospheric source domain of the Basal Complex, El Hierro formed above the same domain, whereas the younger units on La Palma tapped a distinct asthenospheric domain located further north. The short-lived Bejenado volcano that formed directly after the giant Cumbre Nueva sector collapse at c. 560 ka produced the isotopically most depleted lavas reported from La Palma thus far. Their compositions suggest incorporation of a depleted pyroxenitic component. The Bejenado lavas also extend to the highest Nb/U and Ba/Th and lowest La/Nb ratios of all La Palma lavas, consistent with increased melting of amphibole within the lithospheric mantle or lower crust. We propose that the collapse is related to the migration of magmatism to the south of La Palma, and led to short-term enhanced decompression melting of amphibole and pyroxenite within the lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-02
    Description: A suite of 48 samples, including both historical and prehistoric lavas and some plutonic rocks, have been analysed from the Cumbre Vieja rift, La Palma, Canary Islands. Additionally, mineral–melt partition coefficients have been measured for clinopyroxene, plagioclase, amphibole, titanite and apatite in selected rocks. The lavas range from basanite to phonolite (SiO2 = 41·2–57·5 wt % and MgO = 10–0·8 wt %) in composition and form coherent, curvilinear major and trace element arrays in variation diagrams, irrespective of eruption age. The mafic lavas have typical ocean island incompatible trace element patterns and Sr, Nd and Pb isotope compositions show little variation but have a HIMU-type character. Generation of the parental magmas is inferred to have involved ∼4% dynamic melting of a garnet lherzolite source that may have previously been metasomatized by melts derived from a recycled mafic component containing residual phlogopite. The major process of differentiation to phonotephrite involved fractional crystallization of basanitic magmas that evolved along the same liquid line of descent under similar pressure–temperature conditions. Numerical simulations using the MELTS algorithm suggest that this occurred across a temperature interval from c. 1320 to 950°C at 400 MPa and an oxygen fugacity equivalent to quartz–fayalite–magnetite (QFM), with an initial H2O content of 0·3 wt %. The later stages of differentiation (〈5 wt % MgO) were dominated by mixing with partial melts of young syenites formed from earlier magma batches. All of the lavas are characterized by 230Th and 226Ra excesses and (230Th/238U) decreases with decreasing Nb/U and increasing SiO2, with no accompanying change in (226Ra/230Th). To explain the observations, we propose a model in which there was a significant role for amphibole, and more importantly accessory titanite, in decre'asing Nb/U, Ce/Pb and Th/U ratios and increasing or buffering (226Ra/230Th) ratios during the later stages of differentiation and magma mixing. These processes all occurred over a few millennia in small magma batches that were repeatedly emplaced within the mid-crust of the Cumbre Vieja rift system prior to rapid transport to the surface.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-14
    Description: The aseismic Cocos and Carnegie Ridges, two prominent bathymetric features in the eastern Pacific, record ∼20 Myr of interaction between the Galápagos hotspot and the adjacent Galápagos Spreading Center. Trace element data determined by inductively coupled plasma-mass spectrometry in 〉90 dredged seamount lavas are used to estimate melt generation conditions and mantle source compositions along the ridges. Lavas from seamount provinces on the Cocos Ridge are alkalic and more enriched in incompatible trace elements than any in the Galápagos archipelago today. The seamount lavas are effectively modeled as small degree melts of a Galápagos plume source. Their eruption immediately follows the failure of a rift zone at each seamount province's location. Thus the anomalously young alkalic lavas of the Cocos Ridge, including Cocos Island, are probably caused by post-abandonment volcanism following either a ridge jump or rift failure, and not the direct activity of the Galápagos plume. The seamounts have plume-like signatures because they tap underlying mantle previously infused with Galápagos plume material. Whereas plume heterogeneities appear to be long-lived, tectonic rearrangements of the ridge plate boundary may be the dominant factor in controlling regional eruptive behavior and compositional variations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-23
    Description: The Tamazert Eocene alkaline complex of the Central High Atlas Range of Morocco hosts the largest outcropping occurrences of carbonatites in northern Africa. The complex consists of carbonatites and undersaturated ultramafic to syenitic alkaline to peralkaline silicate rocks. Mineralogically and geochemically the Tamazert carbonatites are classified as calciocarbonatites, magnesiocarbonatites and silicocarbonatites.They are enriched in light rare earth elements and large ion lithophile elements (Cs, Rb, Ba, U,Th), but depleted in high field strength elements (particularly, Ti, Nb and Ta). Stable and radiogenic isotope ratios vary in the range of δ13CPDB=-5·8 to 1·8 0/00, δ18OSMOW=6·9-23·5 0/00, initial 87Sr/86Sr=0·7031-0·7076, 143Nd/144Nd=0·5125-0·5129 and 206Pb/204Pb=18·29-19·89. Calciocarbonatites intruding Jurassic limestones have the highest δ13C and δ18O values and the most radiogenic initial 87Sr/86Sr, but least radiogenic 143Nd/144Nd, 206Pb/204Pb and 208Pb/204Pb isotope ratios, and are interpreted to have interacted with the limestones (crustal components). The magnesio- and silicocarbonatites have Sr, Nd and Pb isotope ratios that are nearly identical to those of low-87Sr/86Sr calciocarbonatites. The isotope signature of the high-Sr, low-87Sr/86Sr calciocarbonatites with mantle-type O and C isotopic compositions indicates the presence of HIMU- and EMI-type components in the mantle source of the Tamazert carbonatites, similar to what has been proposed for the Cape Verde and Canary Islands.The close similarity in carbonatite composition between the Cape Verde and Canary Islands and Tamazert suggests a common sublithospheric source for these carbonatites. We therefore propose that theTamazert carbonatites originated through melting of Canary plume material that may have flowed through a sub-lithospheric corridor extending from the Atlantic near the Canary Islands to the Middle Atlas, formed by the delamination of the subcontinental lithosphere in response to Africa-Europe collision at c. 42Ma. Seismic tomography data suggest that the common source may be within the lower mantle at depths 〉1000 km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: The 4·0–3·6 Ma Don Manuel igneous complex (DMIC), central Chile, provides a window into igneous processes involved in magma genesis associated with porphyry-style copper mineralization. This study uses petrographic, petrological, geochemical and isotopic data to examine the evolution of magmas from the mid- to lower-crustal source region to shallow emplacement. The data provide evidence for progressive oxidation of magma during differentiation and ascent, fractionation of Cl from S through degassing, and the late-stage, near-solidus removal of Cl from the system. Magmas of basaltic andesite to rhyolite composition were produced by polybaric differentiation of hydrous parental mafic magmas. Variations in crustal differentiation depths led to variable suppression of plagioclase saturation that is recorded in distinctive strontium versus anorthite evolution patterns. Hydrous, derivative magmas generated over a wide range of pressures were episodically emplaced into the shallow crust at depths between 3·5 and 5 km. Intermediate porphyry dikes closely associated with copper mineralization contain diverse crystal cargoes indicating significant magma mixing. These crystal cargoes represent samples of crystal mush entrained from different depths, as well as crystals originating in different magmas and crystals grown in situ from hybridized magmas. Mafic enclaves containing plagioclase and amphibole compositions that match those of the basaltic andesites occur within biotite tonalite, testifying to magma mingling during ascent. Sulfur and chlorine contents of apatite within the different DMIC units record variable degassing and decoupling of volatile components with sulfur showing variations of three orders of magnitude compared with one order of magnitude for chlorine. The hypabyssal nature of the DMIC affords a detailed, integrated record of magmatic differentiation processes occurring within trans-crustal magmatic systems of the sort thought to characterize many crustal arc settings and play a fundamental role in driving porphyry-style copper mineralization.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-24
    Description: Discovery of seafloor volcanism west of Buldir Volcano, the westernmost emergent volcano in the Aleutian arc, demonstrates that surface expression of active Aleutian volcanism falls below sea level just west of 175·9°E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. Lavas dredged from newly discovered seafloor volcanoes up to 300 km west of Buldir have end-member geochemical characteristics that provide new insights into the role of subducted basalt as a source component in Aleutian magmas. Western Aleutian seafloor lavas define a highly calc-alkaline series with 50–70% SiO2. Most samples have Mg-numbers [Mg# = Mg/(Mg + Fe)] greater than 0·60, with higher MgO and lower FeO* compared with average Aleutian volcanic rocks at all silica contents. Common basalts and basaltic andesites in the series are primitive, with average Mg# values of 0·67 (±0·02, n = 99, 1SD), and have Sr concentrations (423 ± 29 ppm, n = 99) and La/Yb ratios (4·5 ± 0·4, n = 29) that are typical of island arc basaltic lavas. A smaller group of basaltic samples is more evolved and geochemically more enriched, with higher and more variable Sr and La/Yb (average Mg# = 0·61 ± 0·1, n = 31; Sr = 882 ± 333 ppm, n = 31; La/Yb = 9·1 ± 0·9, n = 16). None of the geochemically enriched basalts or basaltic andesites has low Y (〈15 ppm) or Yb (〈1·5 ppm), so none show the influence of residual or cumulate garnet. In contrast, most western seafloor andesites, dacites and rhyodacites have higher Sr (〉1000 ppm) and are adakitic, with strongly fractionated trace element patterns (Sr/Y = 50–350, La/Yb = 8–35, Dy/Yb = 2·0–3·5) with low relative abundances of Nb and Ta (La/Ta 〉 100), consistent with an enhanced role for residual or cumulate garnet + rutile. All western seafloor lavas have uniformly radiogenic Hf and Nd isotopes, with εNd = 9·1 ± 0·3 (n = 31) and εHf = 14·5 ± 0·6 (n = 27). Lead isotopes are variable and decrease with increasing SiO2 from basalts with 206Pb/204Pb = 18·51 ± 0·05 (n = 11) to dacites and rhyodacites with 206Pb/204Pb = 18·43 ± 0·04 (n = 18). Western seafloor lavas form a steep trend in 207Pb/204Pb–206Pb/204Pb space, and are collinear with lavas from emergent Aleutian volcanoes, which mostly have 206Pb/204Pb 〉 18·6 and 207Pb/204Pb 〉 15·52. High MgO and Mg# relative to silica, flat to decreasing abundances of incompatible elements, and decreasing Pb isotope ratios with increasing SiO2 rule out an origin for the dacites and rhyodacites by fractional crystallization. The physical setting of some samples (erupted through Bering Sea oceanic lithosphere) rules out an origin for their garnet + rutile trace element signature by melting in the deep crust. Adakitic trace element patterns in the dacites and rhyodacites are therefore interpreted as the product of melting of mid-ocean ridge basalt (MORB) eclogite in the subducting oceanic crust. Western seafloor andesites, dacites and rhyodacites define a geochemical end-member that is isotopically like MORB, with strongly fractionated Ta/Hf, Ta/Nd, Ce/Pb, Yb/Nd and Sr/Y. This eclogite component appears to be present in lavas throughout the arc. Mass-balance modeling indicates that it may contribute 36–50% of the light rare earth elements and 18% of the Hf that is present in Aleutian volcanic rocks. Close juxtaposition of high-Mg# basalt, andesite and dacite implies widely variable temperatures in the western Aleutian mantle wedge. A conceptual model explaining this shows interaction of hydrous eclogite melts with mantle peridotite to produce buoyant diapirs of pyroxenite and pyroxenite melt. These diapirs reach the base of the crust and feed surface volcanism in the western Aleutians, but are diluted by extensive melting in a hotter mantle wedge in the eastern part of the arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...