ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2017. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 30, no. 2 (2017): 92–103, doi:10.5670/oceanog.2017.227.
    Description: The tropical Atlantic basin is one of seven global regions where tropical cyclones (TCs) commonly originate, intensify, and affect highly populated coastal areas. Under appropriate atmospheric conditions, TC intensification can be linked to upper-ocean properties. Errors in Atlantic TC intensification forecasts have not been significantly reduced during the last 25 years. The combined use of in situ and satellite observations, particularly of temperature and salinity ahead of TCs, has the potential to improve the representation of the ocean, more accurately initialize hurricane intensity forecast models, and identify areas where TCs may intensify. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface temperature, salinity, and density fields in support of TC intensity studies and forecasts has yet to be designed and implemented. Autonomous and Lagrangian platforms and sensors offer cost-effective opportunities to accomplish this objective. Here, we highlight recent efforts to use autonomous platforms and sensors, including surface drifters, profiling floats, underwater gliders, and dropsondes, to better understand air-sea processes during high-wind events, particularly those geared toward improving hurricane intensity forecasts. Real-time data availability is key for assimilation into numerical weather forecast models.
    Description: The NOAA/AOML component of this work was originally funded by the Disaster Relief Appropriations Act of 2013, also known as the Sandy Supplemental, and is currently funded through NOAA research grant NA14OAR4830103 by AOML and CARICOOS, as well as NOAA’s Integrated Ocean Observing System (IOOS). The TEMPESTS component of this work is supported by NOAA through the Cooperative Institute for the North Atlantic Region (NA13OAR4830233) with additional analysis support from the WHOI Summer Student Fellowship Program, Nortek Student Equipment Grant, and the Rutgers University Teledyne Webb Graduate Student Fellowship Program. The drifter component of this work is funded through NOAA grant NA15OAR4320071(11.432) in support of the Global Drifter Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2017. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 30, no. 2 (2017): 38–48, doi:10.5670/oceanog.2017.218.
    Description: The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.
    Description: SPURS is supported by multiple NASA grants, with important additional contributions from the US National Science Foundation, NOAA, and the Office of Naval Research, as well as international agencies. SVP drifters are deployed with support from NASA and the NOAA funded Global Drifter Program at the Lagrangian Drifter Laboratory of the Scripps Institution of Oceanography. SVP-S2 drifters are provided by NOAA-AOML and NASA. PRAWLER mooring development is supported by NOAA’s Office of Oceanic and Atmospheric Research, Ocean Observing and Monitoring Division, and by NOAA/PMEL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2017. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 30, no. 2 (2017): 74–87, doi:10.5670/oceanog.2017.224.
    Description: The Arabian Sea circulation is forced by strong monsoonal winds and is characterized by vigorous seasonally reversing currents, extreme differences in sea surface salinity, localized substantial upwelling, and widespread submesoscale thermohaline structures. Its complicated sea surface temperature patterns are important for the onset and evolution of the Asian monsoon. This article describes a program that aims to elucidate the role of upper-ocean processes and atmospheric feedbacks in setting the sea surface temperature properties of the region. The wide range of spatial and temporal scales and the difficulty of accessing much of the region with ships due to piracy motivated a novel approach based on state-of-the-art autonomous ocean sensors and platforms. The extensive data set that is being collected, combined with numerical models and remote sensing data, confirms the role of planetary waves in the reversal of the Somali Current system. These data also document the fast response of the upper equatorial ocean to monsoon winds through changes in temperature and salinity and the connectivity of the surface currents across the northern Indian Ocean. New observations of thermohaline interleaving structures and mixing in setting the surface temperature properties of the northern Arabian Sea are also discussed.
    Description: The authors were funded through NASCar DRI grants. Additional support from the Global Drifter Program, grant NA15OAR4320071 (LC, VH); the CSL Laboratory at the NCAR CISL (Yellowstone ark:/85065/d7wd3xhc) (JMC); and the Department of Energy ACME project DE-SC0012778 (JMC) are gratefully acknowledged.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rainville, L., Centurioni, L. R., Asher, W. E., Clayson, C. A., Drushka, K., Edson, J. B., Hodges, B. A., Hermann, V., Farrar, J. T., Schanze, J. J., & Shcherbina, A. Y. Novel and flexible approach to access the open ocean: Uses of sailing research vessel Lady Amber during SPURS-2. Oceanography, 32(2), (2019): 116-121, doi: 10.5670/oceanog.2019.219.
    Description: SPURS-2 (Salinity Processes in the Upper-ocean Regional Study 2) used the schooner Lady Amber, a small sailing research vessel, to deploy, service, maintain, and recover a variety of oceanographic and meteorological instruments in the eastern Pacific Ocean. Low operational costs allowed us to frequently deploy floats and drifters to collect data necessary for resolving the regional circulation of the eastern tropical Pacific. The small charter gave us the opportunity to deploy drifters in locations chosen according to current conditions, to recover and deploy various autonomous instruments in a targeted and adaptive manner, and to collect additional near-surface and atmospheric measurements in the remote SPURS-2 region.
    Description: Tragically, Lady Amber Captain Peter Flanagan passed away on March 15, 2016, after the initial transit. This was a big loss for his friends and crew—his enthusiasm will be sorely missed. We acknowledge the owner and crew of Lady Amber for remaining committed to the SPURS-2 work. This work would not have been possible without Captain Arran Flanagan and Captain Ryan Struthers and the capable crew of Lady Amber. This project was supported by NASA grant NNX15AT40G. We also acknowledge the contribution of Justin Burnett, Jesse Dosher, and Aaron Paget to the design and installation of the LAPS, and the support and cooperation from all the SPURS-2 PIs.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnston, T. M. S., Schonau, M. C., Paluszkiewicz, T., MacKinnon, J. A., Arbic, B. K., Colin, P. L., Alford, M. H., Andres, M., Centurioni, L., Graber, H. C., Helfrich, K. R., Hormann, V., Lermusiaux, P. F. J., Musgrave, R. C., Powell, B. S., Qiu, B., Rudnick, D. L., Simmons, H. L., St Laurent, L., Terrill, E. J., Trossman, D. S., Voet, G., Wijesekera, H. W., & Zeiden, K. L. Flow Encountering Abrupt Topography (FLEAT): a multiscale observational and modeling program to understand how topography affects flows in the western North Pacific. Oceanography, 32(4), (2019): 10-21, doi: 10.5670/oceanog.2019.407.
    Description: Using a combination of models and observations, the US Office of Naval Research Flow Encountering Abrupt Topography (FLEAT) initiative examines how island chains and submerged ridges affect open ocean current systems, from the hundreds of kilometer scale of large current features to the millimeter scale of turbulence. FLEAT focuses on the western Pacific, mainly on equatorial currents that encounter steep topography near the island nation of Palau. Wake eddies and lee waves as small as 1 km were observed to form as these currents flowed around or over the steep topography. The direction and vertical structure of the incident flow varied over tidal, inertial, seasonal, and interannual timescales, with implications for downstream flow. Models incorporated tides and had grids with resolutions of hundreds of meters to enable predictions of flow transformations as waters encountered and passed around Palau’s islands. In addition to making scientific advances, FLEAT had a positive impact on the local Palauan community by bringing new technology to explore local waters, expanding the country’s scientific infrastructure, maintaining collaborations with Palauan partners, and conducting outreach activities aimed at elementary and high school students, US embassy personnel, and Palauan government officials.
    Description: We are grateful to Captains David Murline and Tom Desjardins and the crew of R/V Roger Revelle, and to the staff of the Coral Reef Research Foundation, for their help in carrying out the field program; to ONR for funding this work; and to FLEAT colleagues for their collaboration. We wish to thank the Bureau of Marine Resources, Ministry of Natural Resources, Environment and Tourism of the Palau National Government, and the Angaur, Kayangel, Koror, and Peleliu State Governments for the relevant permits to conduct this research in Palau’s waters.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...