ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    OXFORD UNIV PRESS
    In:  EPIC3Journal of Plankton Research, OXFORD UNIV PRESS, 39(4), pp. 618-630, ISSN: 0142-7873
    Publication Date: 2017-09-04
    Description: The population genetic structure of Calanoides natalis (ex Calanoides carinatus; Copepoda, Calanoida), an ecologically important component of African upwelling systems, was studied in order to (i) search for potential cryptic species, (ii) describe spatial patterns in the distribution of genetic variance and (iii) identify potential barriers to gene flow. Samples were obtained in the eastern Atlantic Ocean from the Iberian Peninsula to Namibia. Analysis of mitochondrial (cytochrome c oxidase subunit I; COI) and nuclear (citrate synthase; CS) marker genes revealed a genetically cohesive population of C. natalis with a prevalent shift in allele frequencies. The discovery of a deep split solely present in the mitochondrial dataset does not point to cryptic speciation, but rather suggests the occurrence of nuclear mitochondrial pseudogenes or incomplete reproductive isolation upon secondary contact. Genetic differentiation between the northern and southern hemisphere was significant, which may point to a potential, but permeable barrier close to the equator. No vertical genetic structuring was detected in the northern Benguela implying that horizontal differentiation was more pronounced than vertical structuring. Retention mechanisms and the oxygen minimum zone did not have a strong impact on genetic differentiation of C. natalis in the Benguela region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    OXFORD UNIV PRESS
    In:  EPIC3Journal of Plankton Research, OXFORD UNIV PRESS, pp. 1-13, ISSN: 0142-7873
    Publication Date: 2017-07-27
    Description: The population genetic structure of Calanoides natalis (ex Calanoides carinatus; Copepoda, Calanoida), an ecologically important component of African upwelling systems, was studied in order to (i) search for potential cryptic species, (ii) describe spatial patterns in the distribution of genetic variance and (iii) identify potential barriers to gene flow. Samples were obtained in the eastern Atlantic Ocean from the Iberian Peninsula to Namibia. Analysis of mitochondrial (cytochrome c oxidase subunit I; COI) and nuclear (citrate synthase; CS) marker genes revealed a genetically cohesive population of C. natalis with a prevalent shift in allele frequencies. The discovery of a deep split solely present in the mitochondrial dataset does not point to cryptic speciation, but rather suggests the occurrence of nuclear mitochondrial pseudogenes or incomplete reproductive isolation upon secondary contact. Genetic differentiation between the northern and southern hemisphere was significant, which may point to a potential, but permeable barrier close to the equator. No vertical genetic structuring was detected in the northern Benguela implying that horizontal differentiation was more pronounced than vertical structuring. Retention mechanisms and the oxygen minimum zone did not have a strong impact on genetic differentiation of C. natalis in the Benguela region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-23
    Description: Zooplankton community structure is often characterized by using traits as a function of environmental conditions. However, trait-based knowledge on Southern Ocean mesozooplankton is limited, particularly regarding size and elemental composition. Nine stations around the northern Antarctic Peninsula were sampled during austral autumn to investigate the spatial variability in mesozooplankton taxonomic composition, size structure and stoichiometry in relation to environmental predictors, but also to the abundance of Antarctic krill and salps. The mesozooplankton communities around the South Shetland Islands were dominated by small copepods, mainly Oithonidae and Oncaeidae, while stations along the frontal zones and the Weddell Sea revealed a higher proportion of larger organisms. Spatial differences in taxonomic composition and size structure were significantly altered by salp abundance, with stronger impact on small-sized copepods. Furthermore, taxonomic composition was significantly related to temperature and total carbon but not chlorophyll a, indicating reduced relevance of phytoplankton derived food during autumn. Bulk mesozooplankton stoichiometry, however, showed no significant relation to environmental conditions, mesozooplankton size structure or dominant taxa. Our results indicate that aside from bottom-up related drivers, top-down effects of salps may lead to mesozooplankton communities that are more dominated by larger size classes with potential consequences for trophic interactions and nutrient fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...