ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-11-04
    Description: Considerable interannual differences were observed in river water and sea-ice meltwater inventory values derived from d18O and salinity data in the Eurasian Basin along the continental margin of the Laptev Sea in the summers of 1993 and 1995, and in the summers of 2005 and 2006 during Nansen and Amundsen Basins Observational system (NABOS) expeditions. The annually different pattern in river and sea-ice meltwater inventories remain closely linked for all of the years studied, which indicates that source regions and transport mechanisms for both river water and sea-ice formation are largely similar over the relatively shallow Laptev Sea Shelf. A simple Ekman trajectory model for surface Lagrangian particles based solely on wind forcing can explain the main features observed between years with significantly different wind patterns and vorticities, and can also explain differences in river water distributions observed for years with a generally similar offshore wind setting. An index based on this simplified trajectory model is rather similar to the vorticity index, but reflects the hydrology on the shelf better for distinctive years. This index is not correlated with the Arctic Oscillation, but rather with a local mode of oscillation, which controls the outflow and distribution of the Eurasian Basin major freshwater source on an annual timescale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-27
    Description: A correct representation of the ice movement in an Arctic sea-ice-ocean coupled model is essential for a realistic sea-ice and ocean simulation. The aim of this study is to validate the observational and simulated sea-ice drift for the Laptev Sea Shelf region with in situ measurements from the winter of 2007/08. Several satellite remote-sensing data sets are first compared to mooring measurements and afterwards to the sea-ice drift simulated by the coupled sea-ice-ocean model. The different satellite products have a correlation to the in situ data ranging from 0.56 to 0.86. The correlations of sea-ice direction or individual drift vector components between the in situ data and the observations are high, about 0.8. Similar correlations are achieved by the model simulations. The sea-ice drift speed derived from the model and from some satellite products have only moderate correlations of about 0.6 to the in situ record. The standard errors for the satellite products and model simulations drift components are similar to the errors of the satellite products in the central Arctic and are about 0.03 m/s. The fast-ice parameterization implementation in the model was also successfully tested for its influence on the sea-ice drift. In contrast to the satellite products, the model drift simulations have a full temporal and spatial coverage and results are reliable enough to use as sea-ice drift estimates on the Laptev Sea Shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-31
    Description: In this paper we present new data from ship-based measurements and two-year observations from moorings in the Laptev Sea along with Russian historical data. The observations from the Laptev Sea in 2007 indicate that the bottom water temperatures on the mid-shelf increased by more than 3°C compared to the long-term mean as a consequence of the unusually high summertime surface water temperatures. Such a distinct increase in near- bottom temperatures has not been observed before. Remnants of the relatively warm bottom water occupied the mid-shelf from September 2007 until April 2008. Strong polynya activity during March to May 2007 caused more summertime open water and therefore warmer sea surface temperatures in the Laptev Sea. During the ice-free period in August and September 2007, the prevailing cyclonic atmospheric circulation deflected the freshwater plume of the River Lena to the east, which increased the salinity on the mid-shelf north of the Lena Delta. The resulting weaker density stratification allowed more vertical mixing of the water column during storms in late September and early October, leading to the observed warming of the near-bottom layer in the still ice-free Laptev Sea. In summer and autumn 2008, when the density stratification was stronger and sea surface temperatures were close to the long-term mean, no near-bottom water warming was observed. Warmer water temperatures near the seabed may also impact the stability of the shelf’s submarine permafrost.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...