ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-19
    Description: Ocean acidification (OA), the dissolution of excess anthropogenic carbon dioxide in ocean waters, is a potential stressor to many marine fish species. Whether species have the potential to acclimate and adapt to changes in the seawater carbonate chemistry is still largely unanswered. Simulation experiments across several generations are challenging for large commercially exploited species because of their long generation times. For Atlantic cod (Gadus morhua), we present first data on the effects of parental acclimation to elevated aquatic CO2 on larval survival, a fundamental parameter determining population recruitment. The parental generation in this study was exposed to either ambient or elevated aquatic CO2 levels simulating end-of-century OA levels (~1100 µatm CO2) for six weeks prior to spawning. Upon fully reciprocal exposure of the F1 generation, we quantified larval survival, combined with two larval feeding regimes in order to investigate the potential effect of energy limitation. We found a significant reduction in larval survival at elevated CO2 that was partly compensated by parental acclimation to the same CO2 exposure. Such compensation was only observed in the treatment with high food availability. This complex 3-way interaction indicates that surplus metabolic resources need to be available to allow a transgenerational alleviation response to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Research
    In:  The ISME Journal, 11 . pp. 2167-2174.
    Publication Date: 2020-02-06
    Description: On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-16
    Description: Seagrasses colonized the sea1 on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet2. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes3, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae4 and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming5, 6, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants7.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...