ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-27
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
  • 4
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Auscavitch, S. R., Deere, M. C., Keller, A. G., Rotjan, R. D., Shank, T. M., & Cordes, E. E. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands Protected Area. Frontiers in Marine Science, 7, (2020): 42, doi:10.3389/fmars.2020.00042.
    Description: The Phoenix Islands Protected Area, in the central Pacific waters of the Republic of Kiribati, is a model for large marine protected area (MPA) development and maintenance, but baseline records of the protected biodiversity in its largest environment, the deep sea (〉200 m), have not yet been determined. In general, the equatorial central Pacific lacks biogeographic perspective on deep-sea benthic communities compared to more well-studied regions of the North and South Pacific Ocean. In 2017, explorations by the NOAA ship Okeanos Explorer and R/V Falkor were among the first to document the diversity and distribution of deep-water benthic megafauna on numerous seamounts, islands, shallow coral reef banks, and atolls in the region. Here, we present baseline deep-sea coral species distribution and community assembly patterns within the Scleractinia, Octocorallia, Antipatharia, and Zoantharia with respect to different seafloor features and abiotic environmental variables across bathyal depths (200–2500 m). Remotely operated vehicle (ROV) transects were performed on 17 features throughout the Phoenix Islands and Tokelau Ridge Seamounts resulting in the observation of 12,828 deep-water corals and 167 identifiable morphospecies. Anthozoan assemblages were largely octocoral-dominated consisting of 78% of all observations with seamounts having a greater number of observed morphospecies compared to other feature types. Overlying water masses were observed to have significant effects on community assembly across bathyal depths. Revised species inventories further suggest that the protected area it is an area of biogeographic overlap for Pacific deep-water corals, containing species observed across bathyal provinces in the North Pacific, Southwest Pacific, and Western Pacific. These results underscore significant geographic and environmental complexity associated with deep-sea coral communities that remain in under-characterized in the equatorial central Pacific, but also highlight the additional efforts that need to be brought forth to effectively establish baseline ecological metrics in data deficient bathyal provinces.
    Description: Funding for this work was provided by NOAA Office of Ocean Exploration and Research (Grant No. NA17OAR0110083) to RR, EC, TS, and David Gruber.
    Keywords: deep sea coral ; seamounts ; marine protected area ; marine biogeography ; community structure ; equatorial central Pacific ; water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Amon, D. J., Kennedy, B. R. C., Cantwel, K., Suhre, K., Glickson, D., Shank, T. M., & Rotjan, R. D. Deep-sea debris in the central and western Pacific Ocean. Frontiers in Marine Science, 7, (2020): 369, doi:10.3389/fmars.2020.00369.
    Description: Marine debris is a growing problem in the world’s deep ocean. The naturally slow biological and chemical processes operating at depth, coupled with the types of materials that are used commercially, suggest that debris is likely to persist in the deep ocean for long periods of time, ranging from hundreds to thousands of years. However, the realized scale of marine debris accumulation in the deep ocean is unknown due to the logistical, technological, and financial constraints related to deep-ocean exploration. Coordinated deep-water exploration from 2015 to 2017 enabled new insights into the status of deep-sea marine debris throughout the central and western Pacific Basin via ROV expeditions conducted onboard NOAA Ship Okeanos Explorer and RV Falkor. These expeditions included sites in United States protected areas and monuments, other Exclusive Economic Zones, international protected areas, and areas beyond national jurisdiction. Metal, glass, plastic, rubber, cloth, fishing gear, and other marine debris were encountered during 17.5% of the 188 dives from 150 to 6,000 m depth. Correlations were observed between deep-sea debris densities and depth, geological features, and distance from human-settled land. The highest densities occurred off American Samoa and the main Hawaiian Islands. Debris, mostly consisting of fishing gear and plastic, were also observed in most of the large-scale marine protected areas, adding to the growing body of evidence that even deep, remote areas of the ocean are not immune from human impacts. Interactions with and impacts on biological communities were noted, though further study is required to understand the full extent of these impacts. We also discuss potential sources and long-term implications of this debris.
    Description: We wish to thank the Officers and crew of the NOAA Ship Okeanos Explorer for shipboard support, NOAA OER, and the Global Foundation for Ocean Exploration team for their tremendous support during the fieldwork in the Pacific Ocean. We appreciate NOAA’s support for CAPSTONE which was a collaboration between OER, Office of Marine and Aviation Operations, Pacific Island Fisheries Science Center, Pacific Islands Regional Office, Deep Sea Coral Research and Technology Program, Office of National Marine Sanctuaries, National Center for Environmental Information, National Ocean Service, National Environmental Satellite, Data, and Information Service, Oceanic and Atmospheric Research, and National Marine Fisheries Service. We also thank the Schmidt Ocean Institute, the Master and crew, the Master and crew of the RV Falkor, Kiribati Observer Arenteiti Tekiau, and Expedition Chief Scientist Erik Cordes, while working in the Phoenix Islands Protected Area under PIPA Research Permit #4/17, funded by NOAA OER (#NA17OAR0110083 awarded to RR, TS, and Erik Cordes). Further thanks to the scientists on board and on shore during all voyages. DA has received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement number 747946. DA would also like to acknowledge TBA21-Academy for providing a space for peaceful writing. CAPSTONE was completed in accordance with all regulations regarding environmental compliance and local permitting including the following permits: Kiribati Phoenix Islands Protected Area permit #1/17, Commonwealth of the Northern Mariana Islands Department of Lands and Natural Resources permit #03345; Hawai‘i Department of Land and Natural Resources permit #SAP-2016-64; Cook Islands Marae Moana Permit #05/17, National Marine Sanctuary of American Samoa permit #NMAS-2017-001; American Samoa Department of Marine and Wildlife Resources permit #2017/001; U.S. Fish and Wildlife Convention on International Trade in Endangered Species (CITES) import permit #17US36207C/9; Papahānaumokuākea Marine National Monument permit #PMN-2015-018; and Marshall Islands Ministry of Foreign Affairs #US/98-15. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government.
    Keywords: remotely operated vehicle ; CAPSTONE ; litter ; anthropogenic ; plastics ; fishing gear ; marine protected area ; national marine monument
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hernandez, C. M., Witting, J., Willis, C., Thorrold, S. R., Llopiz, J. K., & Rotjan, R. D. Evidence and patterns of tuna spawning inside a large no-take marine protected area. Scientific Reports, 9(1), (2019): 10772, doi:10.1038/s41598-019-47161-0.
    Description: The Phoenix Islands Protected Area (PIPA), one of the world’s largest marine protected areas, represents 11% of the exclusive economic zone of the Republic of Kiribati, which earns much of its GDP by selling tuna fishing licenses to foreign nations. We have determined that PIPA is a spawning area for skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus), and yellowfin (Thunnus albacares) tunas. Our approach included sampling larvae on cruises in 2015–2017 and using a biological-physical model to estimate spawning locations for collected larvae. Temperature and chlorophyll conditions varied markedly due to observed ENSO states: El Niño (2015) and neutral (2016–2017). However, larval tuna distributions were similar amongst years. Generally, skipjack larvae were patchy and more abundant near PIPA’s northeast corner, while Thunnus larvae exhibited lower and more even abundances. Genetic barcoding confirmed the presence of bigeye (Thunnus obesus) and yellowfin (Thunnus albacares) tuna larvae. Model simulations indicated that most of the larvae collected inside PIPA in 2015 were spawned inside, while stronger currents in 2016 moved more larvae across PIPA’s boundaries. Larval distributions and relative spawning output simulations indicated that both focal taxa spawned inside PIPA in all 3 study years, demonstrating that PIPA is protecting viable tuna spawning habitat.
    Description: Funding and support was provided by the PIPA Trust, Waitt and Oceans5 Foundations, Sea Education Association, the Prince Albert of Monaco Foundation II, New England Aquarium, and Boston University to R.R. and J.W. C.H. was additionally supported by a National Science Foundation Graduate Research Fellowship. J.L. was additionally supported by NOAA through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158 in the form a CINAR Fellow Award, as well as by the WHOI Academic Programs Office. We thank A. Breef-Pilz for onboard sampling assistance, as well as S. Glancy, J. Pringle, E. Martin, J. Fisher, H. Goss, J. Jaskiel, S. Sheehan, and C. Moller for lab assistance. We thank the PIPA Trust and the PIPA Implementation Office for their support, as well as on-ship Kiribati Observers for their support and assistance: Tekeua Auatabu, Iannang Teaioro, Toaea Beiateuea, Taremon Korere, Kareati Waysang, and Moamoa Kabuati. We thank Q. Hanich for reading sections of this paper in advance. This research was conducted under Kiribati and PIPA permits PRP #s 3/17, 1/16, and 2/15 to JW.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...