ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-29
    Description: Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms that build CaCO3 structures. A large proportion of benthic marine calcifiers incorporate Mg2+ into their skeletons (Mg-calcite), which, in general, reduces mineral stability. The relative vulnerability of some marine calcifiers to ocean acidification appears linked to the relative solubility of their shell or skeletal mineralogy, although some organisms have sophisticated mechanisms for constructing and maintaining their CaCO3 structures causing deviation from this dependence. Nevertheless, few studies consider seawater saturation state with respect to the actual Mg-calcite mineralogy (ΩMg-x) of a species when evaluating the effect of ocean acidification on that species. Here, a global dataset of skeletal mole % MgCO3 of benthic calcifiers and in situ environmental conditions spanning a depth range of 0 m (subtidal/neritic) to 5600 m (abyssal) was assembled to calculate in situ ΩMg-x. This analysis shows that 24% of the studied benthic calcifiers currently experience seawater mineral undersaturation (ΩMg-x 〈 1). As a result of ongoing anthropogenic ocean acidification over the next 200 to 3000 years, the predicted decrease in seawater mineral saturation will expose approximately 57% of all studied benthic calcifying species to seawater undersaturation. These observations reveal a surprisingly high proportion of benthic marine calcifiers exposed to seawater that is undersaturated with respect to their skeletal mineralogy, underscoring the importance of using species-specific seawater mineral saturation states when investigating the impact of CO2-induced ocean acidification on benthic marine calcification.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Gelatinous zooplankton (Cnidaria, Ctenophora, and Urochordata, namely, Thaliacea) are ubiquitous members of plankton communities linking primary production to higher trophic levels and the deep ocean by serving as food and transferring “jelly‐carbon” (jelly‐C) upon bloom collapse. Global biomass within the upper 200 m reaches 0.038 Pg C, which, with a 2–12 months life span, serves as the lower limit for annual jelly‐C production. Using over 90,000 data points from 1934 to 2011 from the Jellyfish Database Initiative as an indication of global biomass (JeDI: http://jedi.nceas.ucsb.edu, http://www.bco‐dmo.org/dataset/526852), upper ocean jelly‐C biomass and production estimates, organism vertical migration, jelly‐C sinking rates, and water column temperature profiles from GLODAPv2, we quantitatively estimate jelly‐C transfer efficiency based on Longhurst Provinces. From the upper 200 m production estimate of 0.038 Pg C year−1, 59–72% reaches 500 m, 46–54% reaches 1,000 m, 43–48% reaches 2,000 m, 32–40% reaches 3,000 m, and 25–33% reaches 4,500 m. This translates into ~0.03, 0.02, 0.01, and 0.01 Pg C year−1, transferred down to 500, 1,000, 2,000, and 4,500 m, respectively. Jelly‐C fluxes and transfer efficiencies can occasionally exceed phytodetrital‐based sediment trap estimates in localized open ocean and continental shelves areas under large gelatinous blooms or jelly‐C mass deposition events, but this remains ephemeral and transient in nature. This transfer of fast and permanently exported carbon reaching the ocean interior via jelly‐C constitutes an important component of the global biological soft‐tissue pump, and should be addressed in ocean biogeochemical models, in particular, at the local and regional scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Shallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon (“Nepartak”) hitting KST (12th May, and 2nd–10th July, 2016) were studied within a 10-year time series (2009–2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000–5000 µmol kg−1, and Total Alkalinity (TA) drawdowns were below 1500–1000 µmol kg−1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton Mg:Ca and Sr:Ca ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton Mg:Ca ratio during rising DIC (higher CO2) despite decreasing seawater Mg:Ca ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...