ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  IFM-GEOMAR Annual Report, 2010 . pp. 22-23.
    Publication Date: 2018-10-16
    Description: Globally averaged sea level has risen by just under 10 cm during the last 50 years as a consequence of global warming. The rise, however, is not uniform, neither in time nor in space. Natural climate fluctuations and associated changes in the ocean currents have contributed to the inhomogeneity and is an important factor which will determine the pattern of future sea level rise. While research in the past years has focused on the global-mean trend and its attribution to the melting of glaciers and the thermal expansion of sea water under global warming, attention is shifting to the geographical pattern of sea level change. This is essential for coastal impact assessments, but has not been practical yet because ocean projections from current climate models widely diverge. The improvement of regional sea level prediction requires a better understanding of the underlying dynamical causes.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  IFM-GEOMAR Annual Report, 2008 . pp. 12-13.
    Publication Date: 2018-10-16
    Description: The Agulhas system transports warm and salty waters from the Indian to the Atlantic Ocean and therefore acts as a key element in the global oceanic circulation. Studies have shown that mesoscale processes are not only important for the correct description of the circulation around South Africa itself but also for its impact on the Gulf Stream system in the North Atlantic.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-01
    Description: The Greenland ice sheet has experienced increasing mass loss since the 1990s1, 2. The enhanced freshwater flux due to both surface melt and outlet glacier discharge is assuming an increasingly important role in the changing freshwater budget of the subarctic Atlantic3. The sustained and increasing freshwater fluxes from Greenland to the surface ocean could lead to a suppression of deep winter convection in the Labrador Sea, with potential ramifications for the strength of the Atlantic meridional overturning circulation4, 5, 6. Here we assess the impact of the increases in the freshwater fluxes, reconstructed with full spatial resolution3, using a global ocean circulation model with a grid spacing fine enough to capture the small-scale, eddying transport processes in the subpolar North Atlantic. Our simulations suggest that the invasion of meltwater from the West Greenland shelf has initiated a gradual freshening trend at the surface of the Labrador Sea. Although the freshening is still smaller than the variability associated with the episodic ‘great salinity anomalies’, the accumulation of meltwater may become large enough to progressively dampen the deep winter convection in the coming years. We conclude that the freshwater anomaly has not yet had a significant impact on the Atlantic meridional overturning circulation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Changes in the Atlantic Meridional Overturning Circulation (AMOC) represent a crucial component of Northern Hemisphere climate variability. In modelling studies decadal overturning variability has been attributed to the intensity of deep winter convection in the Labrador Sea. This linkage is challenged by transport observations at sections across the subpolar gyre. Here we report simulations with an eddy-rich ocean model which captures the observed concentration of downwelling in the northeastern Atlantic and the negligible impact of interannual variations in Labrador Sea convection during the last decade. However, the exceptionally cold winters in the Labrador Sea during the first half of the 1990s induced a positive AMOC anomaly of more than 20%, mainly by augmenting the downwelling in the northeastern North Atlantic. The remote effect of excessive Labrador Sea buoyancy forcing is related to rapid spreading of mid-depth density anomalies into the Irminger Sea and their entrainment into the deep boundary current off Greenland.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...