ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-07
    Description: DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from 〉30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bentley, David R -- Balasubramanian, Shankar -- Swerdlow, Harold P -- Smith, Geoffrey P -- Milton, John -- Brown, Clive G -- Hall, Kevin P -- Evers, Dirk J -- Barnes, Colin L -- Bignell, Helen R -- Boutell, Jonathan M -- Bryant, Jason -- Carter, Richard J -- Keira Cheetham, R -- Cox, Anthony J -- Ellis, Darren J -- Flatbush, Michael R -- Gormley, Niall A -- Humphray, Sean J -- Irving, Leslie J -- Karbelashvili, Mirian S -- Kirk, Scott M -- Li, Heng -- Liu, Xiaohai -- Maisinger, Klaus S -- Murray, Lisa J -- Obradovic, Bojan -- Ost, Tobias -- Parkinson, Michael L -- Pratt, Mark R -- Rasolonjatovo, Isabelle M J -- Reed, Mark T -- Rigatti, Roberto -- Rodighiero, Chiara -- Ross, Mark T -- Sabot, Andrea -- Sankar, Subramanian V -- Scally, Aylwyn -- Schroth, Gary P -- Smith, Mark E -- Smith, Vincent P -- Spiridou, Anastassia -- Torrance, Peta E -- Tzonev, Svilen S -- Vermaas, Eric H -- Walter, Klaudia -- Wu, Xiaolin -- Zhang, Lu -- Alam, Mohammed D -- Anastasi, Carole -- Aniebo, Ify C -- Bailey, David M D -- Bancarz, Iain R -- Banerjee, Saibal -- Barbour, Selena G -- Baybayan, Primo A -- Benoit, Vincent A -- Benson, Kevin F -- Bevis, Claire -- Black, Phillip J -- Boodhun, Asha -- Brennan, Joe S -- Bridgham, John A -- Brown, Rob C -- Brown, Andrew A -- Buermann, Dale H -- Bundu, Abass A -- Burrows, James C -- Carter, Nigel P -- Castillo, Nestor -- Chiara E Catenazzi, Maria -- Chang, Simon -- Neil Cooley, R -- Crake, Natasha R -- Dada, Olubunmi O -- Diakoumakos, Konstantinos D -- Dominguez-Fernandez, Belen -- Earnshaw, David J -- Egbujor, Ugonna C -- Elmore, David W -- Etchin, Sergey S -- Ewan, Mark R -- Fedurco, Milan -- Fraser, Louise J -- Fuentes Fajardo, Karin V -- Scott Furey, W -- George, David -- Gietzen, Kimberley J -- Goddard, Colin P -- Golda, George S -- Granieri, Philip A -- Green, David E -- Gustafson, David L -- Hansen, Nancy F -- Harnish, Kevin -- Haudenschild, Christian D -- Heyer, Narinder I -- Hims, Matthew M -- Ho, Johnny T -- Horgan, Adrian M -- Hoschler, Katya -- Hurwitz, Steve -- Ivanov, Denis V -- Johnson, Maria Q -- James, Terena -- Huw Jones, T A -- Kang, Gyoung-Dong -- Kerelska, Tzvetana H -- Kersey, Alan D -- Khrebtukova, Irina -- Kindwall, Alex P -- Kingsbury, Zoya -- Kokko-Gonzales, Paula I -- Kumar, Anil -- Laurent, Marc A -- Lawley, Cynthia T -- Lee, Sarah E -- Lee, Xavier -- Liao, Arnold K -- Loch, Jennifer A -- Lok, Mitch -- Luo, Shujun -- Mammen, Radhika M -- Martin, John W -- McCauley, Patrick G -- McNitt, Paul -- Mehta, Parul -- Moon, Keith W -- Mullens, Joe W -- Newington, Taksina -- Ning, Zemin -- Ling Ng, Bee -- Novo, Sonia M -- O'Neill, Michael J -- Osborne, Mark A -- Osnowski, Andrew -- Ostadan, Omead -- Paraschos, Lambros L -- Pickering, Lea -- Pike, Andrew C -- Pike, Alger C -- Chris Pinkard, D -- Pliskin, Daniel P -- Podhasky, Joe -- Quijano, Victor J -- Raczy, Come -- Rae, Vicki H -- Rawlings, Stephen R -- Chiva Rodriguez, Ana -- Roe, Phyllida M -- Rogers, John -- Rogert Bacigalupo, Maria C -- Romanov, Nikolai -- Romieu, Anthony -- Roth, Rithy K -- Rourke, Natalie J -- Ruediger, Silke T -- Rusman, Eli -- Sanches-Kuiper, Raquel M -- Schenker, Martin R -- Seoane, Josefina M -- Shaw, Richard J -- Shiver, Mitch K -- Short, Steven W -- Sizto, Ning L -- Sluis, Johannes P -- Smith, Melanie A -- Ernest Sohna Sohna, Jean -- Spence, Eric J -- Stevens, Kim -- Sutton, Neil -- Szajkowski, Lukasz -- Tregidgo, Carolyn L -- Turcatti, Gerardo -- Vandevondele, Stephanie -- Verhovsky, Yuli -- Virk, Selene M -- Wakelin, Suzanne -- Walcott, Gregory C -- Wang, Jingwen -- Worsley, Graham J -- Yan, Juying -- Yau, Ling -- Zuerlein, Mike -- Rogers, Jane -- Mullikin, James C -- Hurles, Matthew E -- McCooke, Nick J -- West, John S -- Oaks, Frank L -- Lundberg, Peter L -- Klenerman, David -- Durbin, Richard -- Smith, Anthony J -- B05823/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- MOL04534/Biotechnology and Biological Sciences Research Council/United Kingdom -- Z01 HG200330-03/Intramural NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Nov 6;456(7218):53-9. doi: 10.1038/nature07517.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Illumina Cambridge Ltd. (Formerly Solexa Ltd), Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex CB10 1XL, UK. dbentley@illumina.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987734" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Human, X/genetics ; Consensus Sequence/genetics ; Genome, Human/*genetics ; Genomics/economics/*methods ; Genotype ; Humans ; Male ; Nigeria ; Polymorphism, Single Nucleotide/genetics ; Sensitivity and Specificity ; Sequence Analysis, DNA/economics/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-05
    Description: X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038304/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038304/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seibert, M Marvin -- Ekeberg, Tomas -- Maia, Filipe R N C -- Svenda, Martin -- Andreasson, Jakob -- Jonsson, Olof -- Odic, Dusko -- Iwan, Bianca -- Rocker, Andrea -- Westphal, Daniel -- Hantke, Max -- DePonte, Daniel P -- Barty, Anton -- Schulz, Joachim -- Gumprecht, Lars -- Coppola, Nicola -- Aquila, Andrew -- Liang, Mengning -- White, Thomas A -- Martin, Andrew -- Caleman, Carl -- Stern, Stephan -- Abergel, Chantal -- Seltzer, Virginie -- Claverie, Jean-Michel -- Bostedt, Christoph -- Bozek, John D -- Boutet, Sebastien -- Miahnahri, A Alan -- Messerschmidt, Marc -- Krzywinski, Jacek -- Williams, Garth -- Hodgson, Keith O -- Bogan, Michael J -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Andersson, Inger -- Bajt, Sasa -- Barthelmess, Miriam -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Kirian, Richard -- Hunter, Mark -- Doak, R Bruce -- Marchesini, Stefano -- Hau-Riege, Stefan P -- Frank, Matthias -- Shoeman, Robert L -- Lomb, Lukas -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Schmidt, Carlo -- Foucar, Lutz -- Kimmel, Nils -- Holl, Peter -- Rudek, Benedikt -- Erk, Benjamin -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Weidenspointner, Georg -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Schlichting, Ilme -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Chapman, Henry N -- Hajdu, Janos -- R01 GM095583/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):78-81. doi: 10.1038/nature09748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-751 24 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293374" target="_blank"〉PubMed〈/a〉
    Keywords: Electrons ; Hot Temperature ; Lasers ; Mimiviridae/*chemistry ; Photons ; Time Factors ; X-Ray Diffraction/*instrumentation/*methods ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-31
    Description: Defining mechanisms by which Plasmodium virulence is regulated is central to understanding the pathogenesis of human malaria. Serial blood passage of Plasmodium through rodents, primates or humans increases parasite virulence, suggesting that vector transmission regulates Plasmodium virulence within the mammalian host. In agreement, disease severity can be modified by vector transmission, which is assumed to 'reset' Plasmodium to its original character. However, direct evidence that vector transmission regulates Plasmodium virulence is lacking. Here we use mosquito transmission of serially blood passaged (SBP) Plasmodium chabaudi chabaudi to interrogate regulation of parasite virulence. Analysis of SBP P. c. chabaudi before and after mosquito transmission demonstrates that vector transmission intrinsically modifies the asexual blood-stage parasite, which in turn modifies the elicited mammalian immune response, which in turn attenuates parasite growth and associated pathology. Attenuated parasite virulence associates with modified expression of the pir multi-gene family. Vector transmission of Plasmodium therefore regulates gene expression of probable variant antigens in the erythrocytic cycle, modifies the elicited mammalian immune response, and thus regulates parasite virulence. These results place the mosquito at the centre of our efforts to dissect mechanisms of protective immunity to malaria for the development of an effective vaccine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784817/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784817/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spence, Philip J -- Jarra, William -- Levy, Prisca -- Reid, Adam J -- Chappell, Lia -- Brugat, Thibaut -- Sanders, Mandy -- Berriman, Matthew -- Langhorne, Jean -- 085775/Wellcome Trust/United Kingdom -- 089553/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- MC_U117584248/Medical Research Council/United Kingdom -- U.1175.02.004.00004(60507)/Medical Research Council/United Kingdom -- U117584248/Medical Research Council/United Kingdom -- England -- Nature. 2013 Jun 13;498(7453):228-31. doi: 10.1038/nature12231. Epub 2013 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Culicidae/*parasitology ; Erythrocytes/parasitology ; Host-Parasite Interactions/*immunology ; Insect Vectors/*parasitology ; Malaria/immunology/parasitology/transmission ; Malaria Vaccines/immunology ; Mice ; Mice, Inbred C57BL ; Plasmodium chabaudi/growth & development/*immunology/isolation & ; purification/*pathogenicity ; Serial Passage ; Virulence/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-02
    Description: Cancer research has been rightly and successfully focused on prevention, early detection, and identification of specific molecular targets that distinguish the malignant cells from the neighbouring benign cells. However, reducing lethal tissue injury caused by intensive chemoradiotherapy during treatment of late-stage metastatic cancers remains a key clinical challenge. Here we tested whether the induction of adult stem cells could repair chemoradiation-induced tissue injury and prolong overall survival in mice. We found that intestinal stem cells (ISCs) expressed Slit2 and its single-span transmembrane cell-surface receptor roundabout 1 (Robo1). Partial genetic deletion of Robo1 decreased ISC numbers and caused villus hypotrophy, whereas a Slit2 transgene increased ISC numbers and triggered villus hypertrophy. During lethal dosages of chemoradiation, administering a short pulse of R-spondin 1 (Rspo1; a Wnt agonist) plus Slit2 reduced ISC loss, mitigated gut impairment and protected animals from death, without concomitantly decreasing tumour sensitivity to chemotherapy. Therefore Rspo1 and Slit2 may act as therapeutic adjuvants to enhance host tolerance to aggressive chemoradiotherapy for eradicating metastatic cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888063/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888063/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Wei-Jie -- Geng, Zhen H -- Spence, Jason R -- Geng, Jian-Guo -- CA126897/CA/NCI NIH HHS/ -- K01 DK091415/DK/NIDDK NIH HHS/ -- R01 CA126897/CA/NCI NIH HHS/ -- England -- Nature. 2013 Sep 5;501(7465):107-11. doi: 10.1038/nature12416. Epub 2013 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Cell Proliferation/drug effects ; Female ; Homeostasis/drug effects ; Intercellular Signaling Peptides and Proteins/genetics/*metabolism/pharmacology ; Intestines/*cytology/drug effects/pathology/radiation effects ; Male ; Mice ; Mice, Inbred C57BL ; Neoplasm Metastasis/drug therapy/radiotherapy ; Neoplasms/*drug therapy/pathology/*radiotherapy ; Nerve Tissue Proteins/deficiency/genetics/*metabolism/pharmacology ; Receptors, Immunologic/deficiency/genetics/metabolism ; Regeneration/drug effects/radiation effects ; Signal Transduction/drug effects ; Stem Cells/*cytology/drug effects/*metabolism/radiation effects ; Survival Rate ; Thrombospondins/administration & dosage/*metabolism/pharmacology ; Wnt Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-05
    Description: Gastric diseases, including peptic ulcer disease and gastric cancer, affect 10% of the world's population and are largely due to chronic Helicobacter pylori infection. Species differences in embryonic development and architecture of the adult stomach make animal models suboptimal for studying human stomach organogenesis and pathogenesis, and there is no experimental model of normal human gastric mucosa. Here we report the de novo generation of three-dimensional human gastric tissue in vitro through the directed differentiation of human pluripotent stem cells. We show that temporal manipulation of the FGF, WNT, BMP, retinoic acid and EGF signalling pathways and three-dimensional growth are sufficient to generate human gastric organoids (hGOs). Developing hGOs progressed through molecular and morphogenetic stages that were nearly identical to the developing antrum of the mouse stomach. Organoids formed primitive gastric gland- and pit-like domains, proliferative zones containing LGR5-expressing cells, surface and antral mucous cells, and a diversity of gastric endocrine cells. We used hGO cultures to identify novel signalling mechanisms that regulate early endoderm patterning and gastric endocrine cell differentiation upstream of the transcription factor NEUROG3. Using hGOs to model pathogenesis of human disease, we found that H. pylori infection resulted in rapid association of the virulence factor CagA with the c-Met receptor, activation of signalling and induction of epithelial proliferation. Together, these studies describe a new and robust in vitro system for elucidating the mechanisms underlying human stomach development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCracken, Kyle W -- Cata, Emily M -- Crawford, Calyn M -- Sinagoga, Katie L -- Schumacher, Michael -- Rockich, Briana E -- Tsai, Yu-Hwai -- Mayhew, Christopher N -- Spence, Jason R -- Zavros, Yana -- Wells, James M -- 5P30DK034933/DK/NIDDK NIH HHS/ -- K01 DK091415/DK/NIDDK NIH HHS/ -- K01DK091415/DK/NIDDK NIH HHS/ -- P30 DK078392/DK/NIDDK NIH HHS/ -- P30 DK0789392/DK/NIDDK NIH HHS/ -- R01 DK080823/DK/NIDDK NIH HHS/ -- R01 DK092456/DK/NIDDK NIH HHS/ -- R01 DK098350/DK/NIDDK NIH HHS/ -- R01 GM072915/GM/NIGMS NIH HHS/ -- R01DK080823/DK/NIDDK NIH HHS/ -- R01DK092456/DK/NIDDK NIH HHS/ -- T32 GM063483/GM/NIGMS NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 RR026314/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):400-4. doi: 10.1038/nature13863. Epub 2014 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA. ; Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267, USA. ; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA. ; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA. ; 1] Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA [2] Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA. ; 1] Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA [2] Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363776" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation ; Helicobacter Infections/*physiopathology ; Helicobacter pylori ; Humans ; *Models, Biological ; *Organogenesis ; Organoids/*cytology/microbiology ; Pluripotent Stem Cells/*cytology ; Signal Transduction ; Stomach/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-05
    Description: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals ( approximately 200 nm to 2 mum in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Henry N -- Fromme, Petra -- Barty, Anton -- White, Thomas A -- Kirian, Richard A -- Aquila, Andrew -- Hunter, Mark S -- Schulz, Joachim -- DePonte, Daniel P -- Weierstall, Uwe -- Doak, R Bruce -- Maia, Filipe R N C -- Martin, Andrew V -- Schlichting, Ilme -- Lomb, Lukas -- Coppola, Nicola -- Shoeman, Robert L -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Foucar, Lutz -- Kimmel, Nils -- Weidenspointner, Georg -- Holl, Peter -- Liang, Mengning -- Barthelmess, Miriam -- Caleman, Carl -- Boutet, Sebastien -- Bogan, Michael J -- Krzywinski, Jacek -- Bostedt, Christoph -- Bajt, Sasa -- Gumprecht, Lars -- Rudek, Benedikt -- Erk, Benjamin -- Schmidt, Carlo -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Messerschmidt, Marc -- Bozek, John D -- Hau-Riege, Stefan P -- Frank, Matthias -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Williams, Garth J -- Hajdu, Janos -- Timneanu, Nicusor -- Seibert, M Marvin -- Andreasson, Jakob -- Rocker, Andrea -- Jonsson, Olof -- Svenda, Martin -- Stern, Stephan -- Nass, Karol -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schmidt, Kevin E -- Wang, Xiaoyu -- Grotjohann, Ingo -- Holton, James M -- Barends, Thomas R M -- Neutze, Richard -- Marchesini, Stefano -- Fromme, Raimund -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Andersson, Inger -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Spence, John C H -- 1R01GM095583-01/GM/NIGMS NIH HHS/ -- 1U54GM094625-01/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):73-7. doi: 10.1038/nature09750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. henry.chapman@desy.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293373" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/instrumentation/*methods ; Lasers ; Models, Molecular ; Nanoparticles/*chemistry ; Nanotechnology/instrumentation/*methods ; Photosystem I Protein Complex/*chemistry ; Protein Conformation ; Time Factors ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-12-15
    Description: Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro. For example, human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells that have therapeutic efficacy in animal models of liver disease and diabetes, respectively. However, the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development. This involved activin-induced definitive endoderm formation, FGF/Wnt-induced posterior endoderm pattering, hindgut specification and morphogenesis, and a pro-intestinal culture system to promote intestinal growth, morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal 'organoids' consisted of a polarized, columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers. The epithelium contained functional enterocytes, as well as goblet, Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development, we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3, a pro-endocrine transcription factor that is mutated in enteric anendocrinosis, is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033971/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033971/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spence, Jason R -- Mayhew, Christopher N -- Rankin, Scott A -- Kuhar, Matthew F -- Vallance, Jefferson E -- Tolle, Kathryn -- Hoskins, Elizabeth E -- Kalinichenko, Vladimir V -- Wells, Susanne I -- Zorn, Aaron M -- Shroyer, Noah F -- Wells, James M -- F32 DK083202/DK/NIDDK NIH HHS/ -- F32 DK083202-01/DK/NIDDK NIH HHS/ -- F32 DK83202-01/DK/NIDDK NIH HHS/ -- K01 DK091415/DK/NIDDK NIH HHS/ -- P30 DK078392/DK/NIDDK NIH HHS/ -- R01 CA142826/CA/NCI NIH HHS/ -- R01 CA142826-02/CA/NCI NIH HHS/ -- R01 DK080823/DK/NIDDK NIH HHS/ -- R01 DK080823-01A1/DK/NIDDK NIH HHS/ -- R01 DK080823-01A1S1/DK/NIDDK NIH HHS/ -- R01 DK092456/DK/NIDDK NIH HHS/ -- R01 GM072915/GM/NIGMS NIH HHS/ -- R01 GM072915-01A2/GM/NIGMS NIH HHS/ -- R01DK080823A1/DK/NIDDK NIH HHS/ -- R01GM072915/GM/NIGMS NIH HHS/ -- R03 DK084167/DK/NIDDK NIH HHS/ -- R03 DK084167-02/DK/NIDDK NIH HHS/ -- T32 HD07463/HD/NICHD NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):105-9. doi: 10.1038/nature09691. Epub 2010 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21151107" target="_blank"〉PubMed〈/a〉
    Keywords: Activins/pharmacology ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Body Patterning/drug effects ; Cell Culture Techniques ; Cell Differentiation/*drug effects ; Cells, Cultured ; Culture Media/chemistry/pharmacology ; Embryonic Stem Cells/*cytology/drug effects ; Endoderm/cytology/drug effects/embryology ; Fibroblast Growth Factor 4/pharmacology ; Humans ; Induced Pluripotent Stem Cells/*cytology/drug effects ; Intercellular Signaling Peptides and Proteins/*pharmacology ; Intestines/anatomy & histology/*cytology/drug effects/embryology ; Microvilli/drug effects ; Morphogenesis/drug effects ; Nerve Tissue Proteins/genetics/metabolism ; Organogenesis/drug effects ; Time Factors ; Wnt Proteins/pharmacology ; Wnt3 Protein ; Wnt3A Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-20
    Description: Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt, but are inconsistent with acceleration by inward radial diffusive transport. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth's outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thorne, R M -- Li, W -- Ni, B -- Ma, Q -- Bortnik, J -- Chen, L -- Baker, D N -- Spence, H E -- Reeves, G D -- Henderson, M G -- Kletzing, C A -- Kurth, W S -- Hospodarsky, G B -- Blake, J B -- Fennell, J F -- Claudepierre, S G -- Kanekal, S G -- England -- Nature. 2013 Dec 19;504(7480):411-4. doi: 10.1038/nature12889.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095-1565, USA. ; Laboratory for Atmospheric and Space Research, University of Colorado, Boulder, Colorado 80303-7814, USA. ; Each Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824-3525, USA. ; Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA. ; Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242-1479, USA. ; The Aerospace Corporation, Los Angeles, California 90245-4609, USA. ; NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352287" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-22
    Description: Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 A resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kupitz, Christopher -- Basu, Shibom -- Grotjohann, Ingo -- Fromme, Raimund -- Zatsepin, Nadia A -- Rendek, Kimberly N -- Hunter, Mark S -- Shoeman, Robert L -- White, Thomas A -- Wang, Dingjie -- James, Daniel -- Yang, Jay-How -- Cobb, Danielle E -- Reeder, Brenda -- Sierra, Raymond G -- Liu, Haiguang -- Barty, Anton -- Aquila, Andrew L -- Deponte, Daniel -- Kirian, Richard A -- Bari, Sadia -- Bergkamp, Jesse J -- Beyerlein, Kenneth R -- Bogan, Michael J -- Caleman, Carl -- Chao, Tzu-Chiao -- Conrad, Chelsie E -- Davis, Katherine M -- Fleckenstein, Holger -- Galli, Lorenzo -- Hau-Riege, Stefan P -- Kassemeyer, Stephan -- Laksmono, Hartawan -- Liang, Mengning -- Lomb, Lukas -- Marchesini, Stefano -- Martin, Andrew V -- Messerschmidt, Marc -- Milathianaki, Despina -- Nass, Karol -- Ros, Alexandra -- Roy-Chowdhury, Shatabdi -- Schmidt, Kevin -- Seibert, Marvin -- Steinbrener, Jan -- Stellato, Francesco -- Yan, Lifen -- Yoon, Chunhong -- Moore, Thomas A -- Moore, Ana L -- Pushkar, Yulia -- Williams, Garth J -- Boutet, Sebastien -- Doak, R Bruce -- Weierstall, Uwe -- Frank, Matthias -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- 1R01GM095583/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 11;513(7517):261-5. doi: 10.1038/nature13453. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2]. ; Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Lawrence Livermore National Laboratory, Livermore, California 94550, USA. ; Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ; Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] European XFEL GmbH, Notkestrasse 85, 22607 Hamburg, Germany. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA [2] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; 1] Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany [2] Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics and Astronomy, Uppsala University, Regementsvagen 1, SE-752 37 Uppsala, Sweden. ; 1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2] University of Regina, 3737 Wascana Pkwy Regina, Saskatchewan S4S 0A2, Canada. ; Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA. ; 1] Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. ; Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department ARC Centre of Excellence for Coherent X-ray Science, Department of Physics, University of Melbourne, Parkville VIC 3010, Australia. ; Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [3] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. ; 1] Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA [2] Uppsala University, Sankt Olofsgatan 10B, 753 12 Uppsala, Sweden. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany [3] Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043005" target="_blank"〉PubMed〈/a〉
    Keywords: *Crystallography, X-Ray ; Cyanobacteria/*chemistry ; *Models, Molecular ; Photosystem II Protein Complex/*chemistry ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-23
    Description: G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a approximately 20 degrees rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Yanyong -- Zhou, X Edward -- Gao, Xiang -- He, Yuanzheng -- Liu, Wei -- Ishchenko, Andrii -- Barty, Anton -- White, Thomas A -- Yefanov, Oleksandr -- Han, Gye Won -- Xu, Qingping -- de Waal, Parker W -- Ke, Jiyuan -- Tan, M H Eileen -- Zhang, Chenghai -- Moeller, Arne -- West, Graham M -- Pascal, Bruce D -- Van Eps, Ned -- Caro, Lydia N -- Vishnivetskiy, Sergey A -- Lee, Regina J -- Suino-Powell, Kelly M -- Gu, Xin -- Pal, Kuntal -- Ma, Jinming -- Zhi, Xiaoyong -- Boutet, Sebastien -- Williams, Garth J -- Messerschmidt, Marc -- Gati, Cornelius -- Zatsepin, Nadia A -- Wang, Dingjie -- James, Daniel -- Basu, Shibom -- Roy-Chowdhury, Shatabdi -- Conrad, Chelsie E -- Coe, Jesse -- Liu, Haiguang -- Lisova, Stella -- Kupitz, Christopher -- Grotjohann, Ingo -- Fromme, Raimund -- Jiang, Yi -- Tan, Minjia -- Yang, Huaiyu -- Li, Jun -- Wang, Meitian -- Zheng, Zhong -- Li, Dianfan -- Howe, Nicole -- Zhao, Yingming -- Standfuss, Jorg -- Diederichs, Kay -- Dong, Yuhui -- Potter, Clinton S -- Carragher, Bridget -- Caffrey, Martin -- Jiang, Hualiang -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Ernst, Oliver P -- Katritch, Vsevolod -- Gurevich, Vsevolod V -- Griffin, Patrick R -- Hubbell, Wayne L -- Stevens, Raymond C -- Cherezov, Vadim -- Melcher, Karsten -- Xu, H Eric -- DK071662/DK/NIDDK NIH HHS/ -- EY005216/EY/NEI NIH HHS/ -- EY011500/EY/NEI NIH HHS/ -- GM073197/GM/NIGMS NIH HHS/ -- GM077561/GM/NIGMS NIH HHS/ -- GM095583/GM/NIGMS NIH HHS/ -- GM097463/GM/NIGMS NIH HHS/ -- GM102545/GM/NIGMS NIH HHS/ -- GM103310/GM/NIGMS NIH HHS/ -- GM104212/GM/NIGMS NIH HHS/ -- GM108635/GM/NIGMS NIH HHS/ -- P30EY000331/EY/NEI NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 DK066202/DK/NIDDK NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 EY011500/EY/NEI NIH HHS/ -- R01 GM087413/GM/NIGMS NIH HHS/ -- R01 GM109955/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA. ; Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany. ; Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; The National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, New York 10027, USA. ; Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Beijing Computational Science Research Center, Haidian District, Beijing 10084, China. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA. ; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. ; 1] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA [2] Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA. ; Laboratory of Biomolecular Research at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biology, Universitat Konstanz, 78457 Konstanz, Germany. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; 1] Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany [2] Centre for Ultrafast Imaging, 22761 Hamburg, Germany. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [2] Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200343" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestin/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Humans ; Lasers ; Mice ; Models, Molecular ; Multiprotein Complexes/biosynthesis/chemistry/metabolism ; Protein Binding ; Reproducibility of Results ; Rhodopsin/*chemistry/*metabolism ; Signal Transduction ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...