ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-06
    Description: High-harmonic generation by focusing a femtosecond laser onto a gas is a well-known method of producing coherent extreme-ultraviolet (EUV) light. This nonlinear conversion process requires high pulse intensities, greater than 10(13) W cm(-2), which are not directly attainable using only the output power of a femtosecond oscillator. Chirped-pulse amplification enables the pulse intensity to exceed this threshold by incorporating several regenerative and/or multi-pass amplifier cavities in tandem. Intracavity pulse amplification (designed not to reduce the pulse repetition rate) also requires a long cavity. Here we demonstrate a method of high-harmonic generation that requires no extra cavities. This is achieved by exploiting the local field enhancement induced by resonant plasmons within a metallic nanostructure consisting of bow-tie-shaped gold elements on a sapphire substrate. In our experiment, the output beam emitted from a modest femtosecond oscillator (100-kW peak power, 1.3-nJ pulse energy and 10-fs pulse duration) is directly focused onto the nanostructure with a pulse intensity of only 10(11) W cm(-2). The enhancement factor exceeds 20 dB, which is sufficient to produce EUV wavelengths down to 47 nm by injection with an argon gas jet. The method could form the basis for constructing laptop-sized EUV light sources for advanced lithography and high-resolution imaging applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Seungchul -- Jin, Jonghan -- Kim, Young-Jin -- Park, In-Yong -- Kim, Yunseok -- Kim, Seung-Woo -- England -- Nature. 2008 Jun 5;453(7196):757-60. doi: 10.1038/nature07012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Billionth Uncertainty Precision Engineering Group, KAIST, Daedeok Science Town, Daejeon 305-701, South Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18528390" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-10
    Description: At least 120 non-olfactory G-protein-coupled receptors in the human genome are 'orphans' for which endogenous ligands are unknown, and many have no selective ligands, hindering the determination of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Using yeast-based screens against GPR68, here we identify the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. More than 3,000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators, many of which were confirmed in functional assays. One potent GPR68 modulator, ogerin, suppressed recall in fear conditioning in wild-type but not in GPR68-knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Xi-Ping -- Karpiak, Joel -- Kroeze, Wesley K -- Zhu, Hu -- Chen, Xin -- Moy, Sheryl S -- Saddoris, Kara A -- Nikolova, Viktoriya D -- Farrell, Martilias S -- Wang, Sheng -- Mangano, Thomas J -- Deshpande, Deepak A -- Jiang, Alice -- Penn, Raymond B -- Jin, Jian -- Koller, Beverly H -- Kenakin, Terry -- Shoichet, Brian K -- Roth, Bryan L -- GM59957/GM/NIGMS NIH HHS/ -- GM71896/GM/NIGMS NIH HHS/ -- P01 HL114471/HL/NHLBI NIH HHS/ -- R01 DA017204/DA/NIDA NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- U01 MH104974/MH/NIMH NIH HHS/ -- U19MH082441/MH/NIMH NIH HHS/ -- U54 HD079124/HD/NICHD NIH HHS/ -- England -- Nature. 2015 Nov 26;527(7579):477-83. doi: 10.1038/nature15699. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA. ; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA. ; Department of Pharmaceutical Chemistry, University of California at San Francisco, Byers Hall, 1700 4th Street, San Francisco, California 94158-2550, USA. ; Center for Integrative Chemical Biology and Drug Discovery (CICBDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7363, USA. ; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA. ; Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA. ; Center for Translational Medicine and Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA. ; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550826" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Allosteric Site ; Animals ; Anti-Anxiety Agents/analysis/chemistry/metabolism/pharmacology ; Benzyl Alcohols/analysis/*chemistry/metabolism/*pharmacology ; Conditioning, Classical ; *Drug Discovery ; Fear ; Female ; HEK293 Cells ; Humans ; Ligands ; Lorazepam/analysis/*chemistry/metabolism/*pharmacology ; Male ; Memory/drug effects ; Mice ; Mice, Knockout ; Models, Molecular ; Receptors, G-Protein-Coupled/agonists/antagonists & ; inhibitors/chemistry/deficiency/*metabolism ; Signal Transduction/drug effects ; Triazines/analysis/*chemistry/metabolism/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-14
    Description: The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saglamyurek, Erhan -- Sinclair, Neil -- Jin, Jeongwan -- Slater, Joshua A -- Oblak, Daniel -- Bussieres, Felix -- George, Mathew -- Ricken, Raimund -- Sohler, Wolfgang -- Tittel, Wolfgang -- England -- Nature. 2011 Jan 27;469(7331):512-5. doi: 10.1038/nature09719. Epub 2011 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Quantum Information Science, and Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21228775" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-12-23
    Description: Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Hsien-Sung -- Allen, John A -- Mabb, Angela M -- King, Ian F -- Miriyala, Jayalakshmi -- Taylor-Blake, Bonnie -- Sciaky, Noah -- Dutton, J Walter Jr -- Lee, Hyeong-Min -- Chen, Xin -- Jin, Jian -- Bridges, Arlene S -- Zylka, Mark J -- Roth, Bryan L -- Philpot, Benjamin D -- 5F32NS067712/NS/NINDS NIH HHS/ -- 5P30NS045892/NS/NINDS NIH HHS/ -- HHSN-271-2008-00025-C/PHS HHS/ -- P30 HD003110/HD/NICHD NIH HHS/ -- P30 HD003110-45/HD/NICHD NIH HHS/ -- P30HD03110/HD/NICHD NIH HHS/ -- R01EY018323/EY/NEI NIH HHS/ -- R01MH093372/MH/NIMH NIH HHS/ -- R01NS060725/NS/NINDS NIH HHS/ -- R01NS067688/NS/NINDS NIH HHS/ -- T32 HD040127/HD/NICHD NIH HHS/ -- T32 HD040127-10/HD/NICHD NIH HHS/ -- T32HD040127-07/HD/NICHD NIH HHS/ -- England -- Nature. 2011 Dec 21;481(7380):185-9. doi: 10.1038/nature10726.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22190039" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Angelman Syndrome/drug therapy/genetics ; Animals ; Cells, Cultured ; Cerebral Cortex/cytology/drug effects/metabolism ; Drug Evaluation, Preclinical ; Fathers ; Female ; Gene Silencing/*drug effects ; Genomic Imprinting/drug effects/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Mothers ; Neurons/*drug effects/*metabolism ; Small Molecule Libraries/administration & dosage/chemistry/pharmacology ; Topoisomerase Inhibitors/administration & ; dosage/analysis/pharmacokinetics/*pharmacology ; Topotecan/administration & dosage/pharmacokinetics/pharmacology ; Ubiquitin-Protein Ligases/deficiency/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-01-22
    Description: The non-canonical NF-kappaB pathway forms a major arm of NF-kappaB signalling that mediates important biological functions, including lymphoid organogenesis, B-lymphocyte function, and cell growth and survival. Activation of the non-canonical NF-kappaB pathway involves degradation of an inhibitory protein, TNF receptor-associated factor 3 (TRAF3), but how this signalling event is controlled is still unknown. Here we have identified the deubiquitinase OTUD7B as a pivotal regulator of the non-canonical NF-kappaB pathway. OTUD7B deficiency in mice has no appreciable effect on canonical NF-kappaB activation but causes hyperactivation of non-canonical NF-kappaB. In response to non-canonical NF-kappaB stimuli, OTUD7B binds and deubiquitinates TRAF3, thereby inhibiting TRAF3 proteolysis and preventing aberrant non-canonical NF-kappaB activation. Consequently, the OTUD7B deficiency results in B-cell hyper-responsiveness to antigens, lymphoid follicular hyperplasia in the intestinal mucosa, and elevated host-defence ability against an intestinal bacterial pathogen, Citrobacter rodentium. These findings establish OTUD7B as a crucial regulator of signal-induced non-canonical NF-kappaB activation and indicate a mechanism of immune regulation that involves OTUD7B-mediated deubiquitination and stabilization of TRAF3.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578967/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578967/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Hongbo -- Brittain, George C -- Chang, Jae-Hoon -- Puebla-Osorio, Nahum -- Jin, Jin -- Zal, Anna -- Xiao, Yichuan -- Cheng, Xuhong -- Chang, Mikyoung -- Fu, Yang-Xin -- Zal, Tomasz -- Zhu, Chengming -- Sun, Shao-Cong -- AI057555/AI/NIAID NIH HHS/ -- AI064639/AI/NIAID NIH HHS/ -- CA137059/CA/NCI NIH HHS/ -- GM84459/GM/NIGMS NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 CA137059/CA/NCI NIH HHS/ -- R01 GM084459/GM/NIGMS NIH HHS/ -- T32 CA009598/CA/NCI NIH HHS/ -- T32CA009598/CA/NCI NIH HHS/ -- England -- Nature. 2013 Feb 21;494(7437):371-4. doi: 10.1038/nature11831. Epub 2013 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology/metabolism ; Bacteria/immunology ; Cells, Cultured ; Endopeptidases/deficiency/genetics/*metabolism ; Female ; Fibroblasts ; HEK293 Cells ; Homeostasis ; Humans ; Intestines/immunology ; Male ; Mice ; NF-kappa B/*metabolism ; Proteolysis ; Receptors, Cell Surface/metabolism ; TNF Receptor-Associated Factor 3/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-19
    Description: Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host-parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wright, Katherine E -- Hjerrild, Kathryn A -- Bartlett, Jonathan -- Douglas, Alexander D -- Jin, Jing -- Brown, Rebecca E -- Illingworth, Joseph J -- Ashfield, Rebecca -- Clemmensen, Stine B -- de Jongh, Willem A -- Draper, Simon J -- Higgins, Matthew K -- 089455/2/09/z/Wellcome Trust/United Kingdom -- 101020/Wellcome Trust/United Kingdom -- 101020/Z/13/Z/Wellcome Trust/United Kingdom -- G1000527/Medical Research Council/United Kingdom -- MR/K025554/1/Medical Research Council/United Kingdom -- England -- Nature. 2014 Nov 20;515(7527):427-30. doi: 10.1038/nature13715. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK. ; ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Alle 1, DK-2970 Horsholm, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132548" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Blocking/*chemistry/immunology ; Antigens, CD147/*chemistry/immunology ; Antigens, Protozoan/chemistry/immunology ; Binding Sites ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; Erythrocytes/*chemistry ; Host-Parasite Interactions/immunology ; Humans ; *Malaria/parasitology ; Models, Molecular ; Plasmodium falciparum/*chemistry/immunology ; Protozoan Proteins/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-28
    Description: The primary visual cortex contains a detailed map of the visual scene, which is represented according to multiple stimulus dimensions including spatial location, ocular dominance and stimulus orientation. The maps for spatial location and ocular dominance arise from the spatial arrangement of thalamic afferent axons in the cortex. However, the origins of the other maps remain unclear. Here we show that the cortical maps for orientation, direction and retinal disparity in the cat (Felis catus) are all strongly related to the organization of the map for spatial location of light (ON) and dark (OFF) stimuli, an organization that we show is OFF-dominated, OFF-centric and runs orthogonal to ocular dominance columns. Because this ON-OFF organization originates from the clustering of ON and OFF thalamic afferents in the visual cortex, we conclude that all main features of visual cortical topography, including orientation, direction and retinal disparity, follow a common organizing principle that arranges thalamic axons with similar retinotopy and ON-OFF polarity in neighbouring cortical regions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860131/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860131/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kremkow, Jens -- Jin, Jianzhong -- Wang, Yushi -- Alonso, Jose M -- EY005253/EY/NEI NIH HHS/ -- R01 EY005253/EY/NEI NIH HHS/ -- R01 EY020679/EY/NEI NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):52-7. doi: 10.1038/nature17936. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Center for Vision Research, State University of New York, College of Optometry, 33 West 42nd Street, New York, New York 10036, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120164" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/radiation effects ; Animals ; Axons/physiology ; *Brain Mapping ; Cats ; Darkness ; Dominance, Ocular/physiology ; Light ; Macaca mulatta ; Male ; Models, Neurological ; Orientation/physiology/radiation effects ; Photic Stimulation ; Retina/physiology/radiation effects ; Space Perception/*physiology/radiation effects ; Thalamus/physiology/radiation effects ; Visual Cortex/*physiology/radiation effects ; Visual Fields/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-27
    Description: Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560617/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560617/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, Jian -- MacMillan, David W C -- R01 GM103558/GM/NIGMS NIH HHS/ -- R01 GM103558-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 3;525(7567):87-90. doi: 10.1038/nature14885. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308895" target="_blank"〉PubMed〈/a〉
    Keywords: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives/chemistry ; Alcohols/*chemistry ; Alkylating Agents/*chemistry ; Alkylation ; Carbon/*chemistry ; Catalysis ; Hydrogen/*chemistry ; Milrinone/chemistry ; Oxidation-Reduction ; Oxygen/chemistry ; Photochemical Processes ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...