ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-15
    Description: Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy, a conserved self-degradative process. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. Here we show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family of transcription factors. In human PDA cells, the MiT/TFE proteins--MITF, TFE3 and TFEB--are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosome activation is specifically required to maintain intracellular amino acid pools. These results identify the MiT/TFE proteins as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate that transcriptional activation of clearance pathways converging on the lysosome is a novel hallmark of aggressive malignancy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perera, Rushika M -- Stoykova, Svetlana -- Nicolay, Brandon N -- Ross, Kenneth N -- Fitamant, Julien -- Boukhali, Myriam -- Lengrand, Justine -- Deshpande, Vikram -- Selig, Martin K -- Ferrone, Cristina R -- Settleman, Jeff -- Stephanopoulos, Gregory -- Dyson, Nicholas J -- Zoncu, Roberto -- Ramaswamy, Sridhar -- Haas, Wilhelm -- Bardeesy, Nabeel -- DP2 CA195761/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01 CA117969-07/CA/NCI NIH HHS/ -- P50CA1270003/CA/NCI NIH HHS/ -- R01 CA133557-05/CA/NCI NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):361-5. doi: 10.1038/nature14587. Epub 2015 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26168401" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acids/metabolism ; Animals ; Autophagy/*genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Carcinoma, Pancreatic Ductal/*genetics/*metabolism/pathology ; Cell Line, Tumor ; Energy Metabolism ; Female ; *Gene Expression Regulation, Neoplastic ; Heterografts ; Homeostasis ; Humans ; Lysosomes/genetics/*metabolism ; Mice ; Microphthalmia-Associated Transcription Factor/metabolism ; Neoplasm Transplantation ; Pancreatic Neoplasms/genetics/*metabolism/*pathology ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-22
    Description: Acetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty-acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate lyase in the cytosol. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near-stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle and fatty-acid synthesis. Although glutamine is consumed at levels exceeding that required for nitrogen biosynthesis, the regulation and use of glutamine metabolism in hypoxic cells is not well understood. Here we show that human cells use reductive metabolism of alpha-ketoglutarate to synthesize AcCoA for lipid synthesis. This isocitrate dehydrogenase-1 (IDH1)-dependent pathway is active in most cell lines under normal culture conditions, but cells grown under hypoxia rely almost exclusively on the reductive carboxylation of glutamine-derived alpha-ketoglutarate for de novo lipogenesis. Furthermore, renal cell lines deficient in the von Hippel-Lindau tumour suppressor protein preferentially use reductive glutamine metabolism for lipid biosynthesis even at normal oxygen levels. These results identify a critical role for oxygen in regulating carbon use to produce AcCoA and support lipid synthesis in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710581/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710581/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Metallo, Christian M -- Gameiro, Paulo A -- Bell, Eric L -- Mattaini, Katherine R -- Yang, Juanjuan -- Hiller, Karsten -- Jewell, Christopher M -- Johnson, Zachary R -- Irvine, Darrell J -- Guarente, Leonard -- Kelleher, Joanne K -- Vander Heiden, Matthew G -- Iliopoulos, Othon -- Stephanopoulos, Gregory -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA122591/CA/NCI NIH HHS/ -- R01 DK075850-01/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22101433" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/biosynthesis/metabolism ; Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; CD8-Positive T-Lymphocytes/cytology ; Carbon/metabolism ; Carcinoma, Renal Cell/metabolism/pathology ; *Cell Hypoxia ; Cell Line, Tumor ; Cells, Cultured ; Citric Acid Cycle ; Glutamine/*metabolism ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Isocitrate Dehydrogenase/deficiency/genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Kidney Neoplasms/metabolism/pathology ; *Lipogenesis ; Oxidation-Reduction ; Oxygen/metabolism ; Palmitic Acid/metabolism ; Von Hippel-Lindau Tumor Suppressor Protein/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...