ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-09
    Description: The extraction of directional motion information from changing retinal images is one of the earliest and most important processing steps in any visual system. In the fly optic lobe, two parallel processing streams have been anatomically described, leading from two first-order interneurons, L1 and L2, via T4 and T5 cells onto large, wide-field motion-sensitive interneurons of the lobula plate. Therefore, T4 and T5 cells are thought to have a pivotal role in motion processing; however, owing to their small size, it is difficult to obtain electrical recordings of T4 and T5 cells, leaving their visual response properties largely unknown. We circumvent this problem by means of optical recording from these cells in Drosophila, using the genetically encoded calcium indicator GCaMP5 (ref. 2). Here we find that specific subpopulations of T4 and T5 cells are directionally tuned to one of the four cardinal directions; that is, front-to-back, back-to-front, upwards and downwards. Depending on their preferred direction, T4 and T5 cells terminate in specific sublayers of the lobula plate. T4 and T5 functionally segregate with respect to contrast polarity: whereas T4 cells selectively respond to moving brightness increments (ON edges), T5 cells only respond to moving brightness decrements (OFF edges). When the output from T4 or T5 cells is blocked, the responses of postsynaptic lobula plate neurons to moving ON (T4 block) or OFF edges (T5 block) are selectively compromised. The same effects are seen in turning responses of tethered walking flies. Thus, starting with L1 and L2, the visual input is split into separate ON and OFF pathways, and motion along all four cardinal directions is computed separately within each pathway. The output of these eight different motion detectors is then sorted such that ON (T4) and OFF (T5) motion detectors with the same directional tuning converge in the same layer of the lobula plate, jointly providing the input to downstream circuits and motion-driven behaviours.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisak, Matthew S -- Haag, Juergen -- Ammer, Georg -- Serbe, Etienne -- Meier, Matthias -- Leonhardt, Aljoscha -- Schilling, Tabea -- Bahl, Armin -- Rubin, Gerald M -- Nern, Aljoscha -- Dickson, Barry J -- Reiff, Dierk F -- Hopp, Elisabeth -- Borst, Alexander -- England -- Nature. 2013 Aug 8;500(7461):212-6. doi: 10.1038/nature12320.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925246" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Drosophila/cytology/*physiology ; Interneurons/physiology ; Locomotion/physiology ; Motion Perception/*physiology ; Neurons/physiology ; Signal Transduction ; Visual Pathways/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-20
    Description: Small multidrug resistance transporters provide an ideal system to study the minimal requirements for active transport. EmrE is one such transporter in Escherichia coli. It exports a broad class of polyaromatic cation substrates, thus conferring resistance to drug compounds matching this chemical description. However, a great deal of controversy has surrounded the topology of the EmrE homodimer. Here we show that asymmetric antiparallel EmrE exchanges between inward- and outward-facing states that are identical except that they have opposite orientation in the membrane. We quantitatively measure the global conformational exchange between these two states for substrate-bound EmrE in bicelles using solution NMR dynamics experiments. Forster resonance energy transfer reveals that the monomers within each dimer are antiparallel, and paramagnetic relaxation enhancement NMR experiments demonstrate differential water accessibility of the two monomers within each dimer. Our experiments reveal a 'dynamic symmetry' that reconciles the asymmetric EmrE structure with the functional symmetry of residues in the active site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253143/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253143/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrison, Emma A -- DeKoster, Gregory T -- Dutta, Supratik -- Vafabakhsh, Reza -- Clarkson, Michael W -- Bahl, Arjun -- Kern, Dorothee -- Ha, Taekjip -- Henzler-Wildman, Katherine A -- 1R01GM095839/GM/NIGMS NIH HHS/ -- R01 GM095839/GM/NIGMS NIH HHS/ -- R01 GM095839-01A1/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Dec 18;481(7379):45-50. doi: 10.1038/nature10703.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22178925" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/*metabolism ; Biological Transport ; Catalytic Domain ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Fluorescence Resonance Energy Transfer ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Pharmaceutical Preparations/*metabolism ; Protein Conformation ; Protein Multimerization ; Water/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...