ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-09
    Description: Cells are organized on length scales ranging from angstrom to micrometres. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343696/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343696/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Pilong -- Banjade, Sudeep -- Cheng, Hui-Chun -- Kim, Soyeon -- Chen, Baoyu -- Guo, Liang -- Llaguno, Marc -- Hollingsworth, Javoris V -- King, David S -- Banani, Salman F -- Russo, Paul S -- Jiang, Qiu-Xing -- Nixon, B Tracy -- Rosen, Michael K -- P30 CA142543/CA/NCI NIH HHS/ -- P41 GM103622/GM/NIGMS NIH HHS/ -- R01 GM056322/GM/NIGMS NIH HHS/ -- R01 GM056322-13/GM/NIGMS NIH HHS/ -- R01-GM088745/GM/NIGMS NIH HHS/ -- R01-GM56322/GM/NIGMS NIH HHS/ -- RR-08630/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 7;483(7389):336-40. doi: 10.1038/nature10879.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8812, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398450" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 2-3 Complex/metabolism ; Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Binding Sites ; Biopolymers/chemistry/metabolism ; Fluorescence Recovery After Photobleaching ; HeLa Cells ; Humans ; Ligands ; Membrane Proteins/chemistry/metabolism ; Multiprotein Complexes/*chemistry/*metabolism ; Oncogene Proteins/chemistry/metabolism ; *Phase Transition ; Phosphorylation ; Proline-Rich Protein Domains ; Protein Structure, Quaternary ; Proteins/*chemistry/*metabolism ; *Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry/metabolism ; src Homology Domains
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-21
    Description: Interferon regulatory factor 4 (IRF4) is an IRF family transcription factor with critical roles in lymphoid development and in regulating the immune response. IRF4 binds DNA weakly owing to a carboxy-terminal auto-inhibitory domain, but cooperative binding with factors such as PU.1 or SPIB in B cells increases binding affinity, allowing IRF4 to regulate genes containing ETS-IRF composite elements (EICEs; 5'-GGAAnnGAAA-3'). Here we show that in mouse CD4(+) T cells, where PU.1/SPIB expression is low, and in B cells, where PU.1 is well expressed, IRF4 unexpectedly can cooperate with activator protein-1 (AP1) complexes to bind to AP1-IRF4 composite (5'-TGAnTCA/GAAA-3') motifs that we denote as AP1-IRF composite elements (AICEs). Moreover, BATF-JUN family protein complexes cooperate with IRF4 in binding to AICEs in pre-activated CD4(+) T cells stimulated with IL-21 and in T(H)17 differentiated cells. Importantly, BATF binding was diminished in Irf4(-/-) T cells and IRF4 binding was diminished in Batf(-/-) T cells, consistent with functional cooperation between these factors. Moreover, we show that AP1 and IRF complexes cooperatively promote transcription of the Il10 gene, which is expressed in T(H)17 cells and potently regulated by IL-21. These findings reveal that IRF4 can signal via complexes containing ETS or AP1 motifs depending on the cellular context, thus indicating new approaches for modulating IRF4-dependent transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537508/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537508/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Peng -- Spolski, Rosanne -- Liao, Wei -- Wang, Lu -- Murphy, Theresa L -- Murphy, Kenneth M -- Leonard, Warren J -- ZIA HL005402-20/Intramural NIH HHS/ -- ZIA HL005402-21/Intramural NIH HHS/ -- ZIA HL005408-05/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Oct 25;490(7421):543-6. doi: 10.1038/nature11530. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA. lip3@nhlbi.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992523" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; B-Lymphocytes/metabolism ; Base Sequence ; Basic-Leucine Zipper Transcription Factors/deficiency/genetics/*metabolism ; Binding Sites ; CD4-Positive T-Lymphocytes/cytology/*metabolism ; Cell Differentiation ; Female ; Interferon Regulatory Factors/deficiency/genetics/*metabolism ; Interleukin-10/genetics ; Interleukins/immunology ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Nucleotide Motifs ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-jun/*metabolism ; Signal Transduction ; Th17 Cells/cytology/immunology ; Trans-Activators/metabolism ; Transcription Factor AP-1/metabolism ; *Transcription, Genetic ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...