ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-24
    Description: The transcription factor IRF4 (interferon regulatory factor 4) is required during an immune response for lymphocyte activation and the generation of immunoglobulin-secreting plasma cells. Multiple myeloma, a malignancy of plasma cells, has a complex molecular aetiology with several subgroups defined by gene expression profiling and recurrent chromosomal translocations. Moreover, the malignant clone can sustain multiple oncogenic lesions, accumulating genetic damage as the disease progresses. Current therapies for myeloma can extend survival but are not curative. Hence, new therapeutic strategies are needed that target molecular pathways shared by all subtypes of myeloma. Here we show, using a loss-of-function, RNA-interference-based genetic screen, that IRF4 inhibition is toxic to myeloma cell lines, regardless of transforming oncogenic mechanism. Gene expression profiling and genome-wide chromatin immunoprecipitation analysis uncovered an extensive network of IRF4 target genes and identified MYC as a direct target of IRF4 in activated B cells and myeloma. Unexpectedly, IRF4 was itself a direct target of MYC transactivation, generating an autoregulatory circuit in myeloma cells. Although IRF4 is not genetically altered in most myelomas, they are nonetheless addicted to an aberrant IRF4 regulatory network that fuses the gene expression programmes of normal plasma cells and activated B cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2542904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2542904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaffer, Arthur L -- Emre, N C Tolga -- Lamy, Laurence -- Ngo, Vu N -- Wright, George -- Xiao, Wenming -- Powell, John -- Dave, Sandeep -- Yu, Xin -- Zhao, Hong -- Zeng, Yuxin -- Chen, Bangzheng -- Epstein, Joshua -- Staudt, Louis M -- CA113992/CA/NCI NIH HHS/ -- CA97513/CA/NCI NIH HHS/ -- R01 CA113992/CA/NCI NIH HHS/ -- R01 CA113992-02/CA/NCI NIH HHS/ -- R33 CA097513-03/CA/NCI NIH HHS/ -- Z99 CA999999/Intramural NIH HHS/ -- England -- Nature. 2008 Jul 10;454(7201):226-31. doi: 10.1038/nature07064. Epub 2008 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18568025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism/pathology ; Cell Survival ; Cell Transformation, Neoplastic/genetics ; Cells, Cultured ; Chromatin Immunoprecipitation ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, myc/genetics ; Humans ; Interferon Regulatory Factors/deficiency/genetics/*metabolism ; Mice ; Multiple Myeloma/genetics/*metabolism/*pathology ; Proto-Oncogene Proteins c-myc/metabolism ; RNA Interference ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epstein, Slava S -- England -- Nature. 2009 Feb 26;457(7233):1083. doi: 10.1038/4571083a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA. s.epstein@neu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Drug Resistance, Microbial/physiology ; *Microbial Viability/drug effects ; *Microbiology ; *Models, Biological ; Stochastic Processes ; Tuberculosis/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-25
    Description: An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in adult mouse liver using state-of-the-art RNA interference technology. Unexpectedly, the endocytic system was resilient to depletion of Rab5 and collapsed only when Rab5 decreased to a critical level. Loss of Rab5 below this threshold caused a marked reduction in the number of early endosomes, late endosomes and lysosomes, associated with a block of low-density lipoprotein endocytosis. Loss of endosomes caused failure to deliver apical proteins to the bile canaliculi, suggesting a requirement for polarized cargo sorting. Our results demonstrate for the first time, to our knowledge, the role of Rab5 as an endosome organizer in vivo and reveal the resilience mechanisms of the endocytic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeigerer, Anja -- Gilleron, Jerome -- Bogorad, Roman L -- Marsico, Giovanni -- Nonaka, Hidenori -- Seifert, Sarah -- Epstein-Barash, Hila -- Kuchimanchi, Satya -- Peng, Chang Geng -- Ruda, Vera M -- Del Conte-Zerial, Perla -- Hengstler, Jan G -- Kalaidzidis, Yannis -- Koteliansky, Victor -- Zerial, Marino -- England -- Nature. 2012 May 23;485(7399):465-70. doi: 10.1038/nature11133.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622570" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Polarity ; Cells, Cultured ; Endocytosis ; Endosomes/*metabolism ; Gene Knockdown Techniques ; Hepatocytes/cytology/metabolism ; Isoenzymes/biosynthesis/deficiency/genetics/metabolism ; Lipoproteins, LDL/metabolism ; Liver/cytology/enzymology/metabolism ; Lysosomes/*metabolism ; Mice ; Multivesicular Bodies/metabolism ; Organ Specificity ; Protein Biosynthesis ; RNA Interference ; RNA, Messenger/analysis/genetics ; Time Factors ; Vesicular Transport Proteins/metabolism ; rab5 GTP-Binding Proteins/biosynthesis/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-01
    Description: The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Xing-Yi -- Li, Jia-Lu -- Yang, Xing-Lou -- Chmura, Aleksei A -- Zhu, Guangjian -- Epstein, Jonathan H -- Mazet, Jonna K -- Hu, Ben -- Zhang, Wei -- Peng, Cheng -- Zhang, Yu-Ji -- Luo, Chu-Ming -- Tan, Bing -- Wang, Ning -- Zhu, Yan -- Crameri, Gary -- Zhang, Shu-Yi -- Wang, Lin-Fa -- Daszak, Peter -- Shi, Zheng-Li -- R01AI079231/AI/NIAID NIH HHS/ -- R01TW005869/TW/FIC NIH HHS/ -- R56TW009502/TW/FIC NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):535-8. doi: 10.1038/nature12711. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology of the Chinese Academy of Sciences, Wuhan 430071, China [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172901" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cercopithecus aethiops ; China ; Chiroptera/*virology ; Disease Reservoirs/virology ; Feces/virology ; Fluorescent Antibody Technique ; Genome, Viral/genetics ; Host Specificity ; Humans ; Molecular Sequence Data ; Pandemics/prevention & control/veterinary ; Peptidyl-Dipeptidase A/genetics/*metabolism ; Real-Time Polymerase Chain Reaction ; Receptors, Virus/genetics/metabolism ; SARS Virus/genetics/*isolation & purification/*metabolism/ultrastructure ; Severe Acute Respiratory Syndrome/prevention & ; control/transmission/veterinary/virology ; Species Specificity ; Spike Glycoprotein, Coronavirus/chemistry/metabolism ; Vero Cells ; Virion/isolation & purification/ultrastructure ; Virus Internalization ; Viverridae/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-29
    Description: Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227084/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227084/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, Joshua W K -- Jung, Youngsook L -- Liu, Tao -- Alver, Burak H -- Lee, Soohyun -- Ikegami, Kohta -- Sohn, Kyung-Ah -- Minoda, Aki -- Tolstorukov, Michael Y -- Appert, Alex -- Parker, Stephen C J -- Gu, Tingting -- Kundaje, Anshul -- Riddle, Nicole C -- Bishop, Eric -- Egelhofer, Thea A -- Hu, Sheng'en Shawn -- Alekseyenko, Artyom A -- Rechtsteiner, Andreas -- Asker, Dalal -- Belsky, Jason A -- Bowman, Sarah K -- Chen, Q Brent -- Chen, Ron A-J -- Day, Daniel S -- Dong, Yan -- Dose, Andrea C -- Duan, Xikun -- Epstein, Charles B -- Ercan, Sevinc -- Feingold, Elise A -- Ferrari, Francesco -- Garrigues, Jacob M -- Gehlenborg, Nils -- Good, Peter J -- Haseley, Psalm -- He, Daniel -- Herrmann, Moritz -- Hoffman, Michael M -- Jeffers, Tess E -- Kharchenko, Peter V -- Kolasinska-Zwierz, Paulina -- Kotwaliwale, Chitra V -- Kumar, Nischay -- Langley, Sasha A -- Larschan, Erica N -- Latorre, Isabel -- Libbrecht, Maxwell W -- Lin, Xueqiu -- Park, Richard -- Pazin, Michael J -- Pham, Hoang N -- Plachetka, Annette -- Qin, Bo -- Schwartz, Yuri B -- Shoresh, Noam -- Stempor, Przemyslaw -- Vielle, Anne -- Wang, Chengyang -- Whittle, Christina M -- Xue, Huiling -- Kingston, Robert E -- Kim, Ju Han -- Bernstein, Bradley E -- Dernburg, Abby F -- Pirrotta, Vincenzo -- Kuroda, Mitzi I -- Noble, William S -- Tullius, Thomas D -- Kellis, Manolis -- MacAlpine, David M -- Strome, Susan -- Elgin, Sarah C R -- Liu, Xiaole Shirley -- Lieb, Jason D -- Ahringer, Julie -- Karpen, Gary H -- Park, Peter J -- 092096/Wellcome Trust/United Kingdom -- 101863/Wellcome Trust/United Kingdom -- 54523/Wellcome Trust/United Kingdom -- 5RL9EB008539/EB/NIBIB NIH HHS/ -- K99 HG006259/HG/NHGRI NIH HHS/ -- K99HG006259/HG/NHGRI NIH HHS/ -- R01 GM098461/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R37 GM048405/GM/NIGMS NIH HHS/ -- T32 GM071340/GM/NIGMS NIH HHS/ -- T32 HG002295/HG/NHGRI NIH HHS/ -- U01 HG004258/HG/NHGRI NIH HHS/ -- U01 HG004270/HG/NHGRI NIH HHS/ -- U01 HG004279/HG/NHGRI NIH HHS/ -- U01 HG004695/HG/NHGRI NIH HHS/ -- U01HG004258/HG/NHGRI NIH HHS/ -- U01HG004270/HG/NHGRI NIH HHS/ -- U01HG004279/HG/NHGRI NIH HHS/ -- U01HG004695/HG/NHGRI NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- U54CA121852/CA/NCI NIH HHS/ -- U54HG004570/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 28;512(7515):449-52. doi: 10.1038/nature13415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] [4] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3]. ; 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] [4] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Department of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea [2] Systems Biomedical Informatics Research Center, College of Medicine, Seoul National University, Seoul 110-799, Korea. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; 1] National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA [2] National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA [3] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA [2] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Program in Bioinformatics, Boston University, Boston, Massachusetts 02215, USA. ; Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA. ; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai 200092, China. ; 1] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA [2] Food Science and Technology Department, Faculty of Agriculture, Alexandria University, 21545 El-Shatby, Alexandria, Egypt. ; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Harvard/MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA. ; Department of Anatomy Physiology and Cell Biology, University of California Davis, Davis, California 95616, USA. ; Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Princess Margaret Cancer Centre, Toronto, Ontario M6G 1L7, Canada. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA. ; Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA [2] Department of Molecular Biology, Umea University, 901 87 Umea, Sweden. ; 1] Systems Biomedical Informatics Research Center, College of Medicine, Seoul National University, Seoul 110-799, Korea [2] Seoul National University Biomedical Informatics, Division of Biomedical Informatics, College of Medicine, Seoul National University, Seoul 110-799, Korea. ; 1] Broad Institute, Cambridge, Massachusetts 02141, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA [3] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA. ; 1] Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA [2] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; 1] Program in Bioinformatics, Boston University, Boston, Massachusetts 02215, USA [2] Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA. ; 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Informatics Program, Children's Hospital, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*cytology/*genetics ; Cell Line ; Centromere/genetics/metabolism ; Chromatin/chemistry/*genetics/*metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Replication/genetics ; Drosophila melanogaster/*cytology/*genetics ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic ; Heterochromatin/chemistry/genetics/metabolism ; Histones/chemistry/metabolism ; Humans ; Molecular Sequence Annotation ; Nuclear Lamina/metabolism ; Nucleosomes/chemistry/genetics/metabolism ; Promoter Regions, Genetic/genetics ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-07
    Description: Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Losee L -- Schneider, Tanja -- Peoples, Aaron J -- Spoering, Amy L -- Engels, Ina -- Conlon, Brian P -- Mueller, Anna -- Schaberle, Till F -- Hughes, Dallas E -- Epstein, Slava -- Jones, Michael -- Lazarides, Linos -- Steadman, Victoria A -- Cohen, Douglas R -- Felix, Cintia R -- Fetterman, K Ashley -- Millett, William P -- Nitti, Anthony G -- Zullo, Ashley M -- Chen, Chao -- Lewis, Kim -- AI085612/AI/NIAID NIH HHS/ -- T-RO1AI085585/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):455-9. doi: 10.1038/nature14098. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA. ; 1] Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany [2] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany. ; Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA. ; 1] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany [2] Institute for Pharmaceutical Biology, University of Bonn, Bonn 53115, Germany. ; Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA. ; Selcia, Ongar, Essex CM5 0GS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25561178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/biosynthesis/chemistry/isolation & ; purification/*pharmacology ; Betaproteobacteria/chemistry/genetics ; Biological Products/chemistry/isolation & purification/pharmacology ; Cell Wall/chemistry/drug effects/metabolism ; Depsipeptides/biosynthesis/chemistry/isolation & purification/*pharmacology ; Disease Models, Animal ; *Drug Resistance, Microbial/genetics ; Female ; Mice ; Microbial Sensitivity Tests ; Microbial Viability/*drug effects ; Molecular Sequence Data ; Multigene Family/genetics ; Mycobacterium tuberculosis/cytology/*drug effects/genetics ; Peptidoglycan/biosynthesis ; Staphylococcal Infections/drug therapy/microbiology ; Staphylococcus aureus/chemistry/cytology/*drug effects/genetics ; Teichoic Acids/biosynthesis ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...