ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group (NPG)  (4)
  • Cambridge University Press
  • 1
    Publication Date: 2014-04-11
    Description: In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kraus, Daniel -- Yang, Qin -- Kong, Dong -- Banks, Alexander S -- Zhang, Lin -- Rodgers, Joseph T -- Pirinen, Eija -- Pulinilkunnil, Thomas C -- Gong, Fengying -- Wang, Ya-chin -- Cen, Yana -- Sauve, Anthony A -- Asara, John M -- Peroni, Odile D -- Monia, Brett P -- Bhanot, Sanjay -- Alhonen, Leena -- Puigserver, Pere -- Kahn, Barbara B -- K01 DK094943/DK/NIDDK NIH HHS/ -- K08 DK090149/DK/NIDDK NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01CA120964/CA/NCI NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK0460200/DK/NIDDK NIH HHS/ -- P30 DK046200/DK/NIDDK NIH HHS/ -- P30 DK057521/DK/NIDDK NIH HHS/ -- P30 DK57521/DK/NIDDK NIH HHS/ -- P30CA006516-46/CA/NCI NIH HHS/ -- R01 DK069966/DK/NIDDK NIH HHS/ -- R01 DK100385/DK/NIDDK NIH HHS/ -- R01 DK69966/DK/NIDDK NIH HHS/ -- R37 DK043051/DK/NIDDK NIH HHS/ -- R37 DK43051/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):258-62. doi: 10.1038/nature13198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA [2] [3] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA. ; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, PO Box 1627, FI-70211 Kuopio, Finland [2] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; 1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Division of Signal Transduction, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, Massachusetts 02215, USA. ; Isis Pharmaceuticals, 1896 Rutherford Road, Carlsbad, California 92008-7326, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717514" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Adipocytes/metabolism/secretion ; Adipose Tissue/enzymology/metabolism ; Adipose Tissue, White/enzymology/metabolism ; Animals ; Diabetes Mellitus, Type 2/enzymology/metabolism ; *Diet ; Energy Metabolism ; Fatty Liver ; Gene Knockdown Techniques ; Glucose Intolerance ; Glucose Transporter Type 4/deficiency/genetics/metabolism ; Insulin Resistance ; Liver/enzymology ; Male ; Mice ; Mice, Inbred C57BL ; NAD/metabolism ; Niacinamide/metabolism ; Nicotinamide N-Methyltransferase/*deficiency/genetics/*metabolism ; Obesity/*enzymology/etiology/genetics/*prevention & control ; Ornithine Decarboxylase/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/metabolism ; S-Adenosylmethionine/metabolism ; Sirtuin 1/metabolism ; Spermine/analogs & derivatives/metabolism ; Thinness/enzymology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-30
    Description: During tissue morphogenesis, simple epithelial sheets undergo folding to form complex structures. The prevailing model underlying epithelial folding involves cell shape changes driven by myosin-dependent apical constriction. Here we describe an alternative mechanism that requires differential positioning of adherens junctions controlled by modulation of epithelial apical-basal polarity. Using live embryo imaging, we show that before the initiation of dorsal transverse folds during Drosophila gastrulation, adherens junctions shift basally in the initiating cells, but maintain their original subapical positioning in the neighbouring cells. Junctional positioning in the dorsal epithelium depends on the polarity proteins Bazooka and Par-1. In particular, the basal shift that occurs in the initiating cells is associated with a progressive decrease in Par-1 levels. We show that uniform reduction of the activity of Bazooka or Par-1 results in uniform apical or lateral positioning of junctions and in each case dorsal fold initiation is abolished. In addition, an increase in the Bazooka/Par-1 ratio causes formation of ectopic dorsal folds. The basal shift of junctions not only alters the apical shape of the initiating cells, but also forces the lateral membrane of the adjacent cells to bend towards the initiating cells, thereby facilitating tissue deformation. Our data thus establish a direct link between modification of epithelial polarity and initiation of epithelial folding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597240/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597240/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yu-Chiun -- Khan, Zia -- Kaschube, Matthias -- Wieschaus, Eric F -- 5R37HD15587/HD/NICHD NIH HHS/ -- P50 GM071508/GM/NIGMS NIH HHS/ -- R37 HD015587/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 28;484(7394):390-3. doi: 10.1038/nature10938.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22456706" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/*physiology/ultrastructure ; Animals ; *Cell Polarity ; Cell Shape ; Choristoma ; Drosophila Proteins/deficiency/genetics/metabolism ; Drosophila melanogaster/*cytology/*embryology/genetics/metabolism ; Epithelial Cells/*cytology/metabolism/ultrastructure ; Epithelium/*embryology/metabolism/ultrastructure ; Gastrula/cytology/embryology/metabolism/ultrastructure ; Gastrulation/*physiology ; Glycogen Synthase Kinase 3 ; Intracellular Signaling Peptides and Proteins/deficiency/genetics/metabolism ; Protein-Serine-Threonine Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-17
    Description: The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1beta production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1beta resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Loebbermann, Jens -- Nakaya, Helder I -- Khan, Nooruddin -- Ma, Hualing -- Gama, Leonardo -- Machiah, Deepa K -- Lawson, Benton -- Hakimpour, Paul -- Wang, Yi-chong -- Li, Shuzhao -- Sharma, Prachi -- Kaufman, Randal J -- Martinez, Jennifer -- Pulendran, Bali -- R01 DK088227/DK/NIDDK NIH HHS/ -- R01 DK103185/DK/NIDDK NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK042394/DK/NIDDK NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- ZIA ES103286-01/Intramural NIH HHS/ -- England -- Nature. 2016 Mar 24;531(7595):523-7. doi: 10.1038/nature17186. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508, Brazil. ; Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India. ; Division of Pathology, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; Virology Core, Emory Vaccine Center and Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037 USA. ; National Institute of Environmental Health Sciences, Mail Drop D2-01 Research Triangle Park, North Carolina 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/administration & dosage/deficiency/*metabolism/pharmacology ; Animals ; Antigen-Presenting Cells/immunology/metabolism ; Autophagy ; Colitis/etiology/*metabolism/pathology/prevention & control ; Disease Models, Animal ; Epithelial Cells/metabolism ; Female ; Humans ; Inflammasomes/*antagonists & inhibitors/metabolism ; Inflammation/etiology/*metabolism/pathology/prevention & control ; Interleukin-1beta/immunology ; Intestines/*metabolism/*pathology ; Male ; Mice ; Microtubule-Associated Proteins/deficiency/metabolism ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Reactive Oxygen Species/metabolism ; Stress, Physiological ; Th17 Cells/immunology ; Ubiquitin-Activating Enzymes/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-11
    Description: Sexual reproduction requires recognition between the male and female gametes. In flowering plants, the immobile sperms are delivered to the ovule-enclosed female gametophyte by guided pollen tube growth. Although the female gametophyte-secreted peptides have been identified to be the chemotactic attractant to the pollen tube, the male receptor(s) is still unknown. Here we identify a cell-surface receptor heteromer, MDIS1-MIK, on the pollen tube that perceives female attractant LURE1 in Arabidopsis thaliana. MDIS1, MIK1 and MIK2 are plasma-membrane-localized receptor-like kinases with extracellular leucine-rich repeats and an intracellular kinase domain. LURE1 specifically binds the extracellular domains of MDIS1, MIK1 and MIK2, whereas mdis1 and mik1 mik2 mutant pollen tubes respond less sensitively to LURE1. Furthermore, LURE1 triggers dimerization of the receptors and activates the kinase activity of MIK1. Importantly, transformation of AtMDIS1 to the sister species Capsella rubella can partially break down the reproductive isolation barrier. Our findings reveal a new mechanism of the male perception of the female attracting signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tong -- Liang, Liang -- Xue, Yong -- Jia, Peng-Fei -- Chen, Wei -- Zhang, Meng-Xia -- Wang, Ying-Chun -- Li, Hong-Ju -- Yang, Wei-Cai -- England -- Nature. 2016 Mar 10;531(7593):241-4. doi: 10.1038/nature16975. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; University of Chinese Academy of Sciences, Beijing 100049, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863186" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Capsella/genetics/metabolism/physiology ; Cell Membrane/metabolism ; Mutation ; Ovule/metabolism ; Phenotype ; Phosphotransferases/chemistry/genetics/*metabolism ; Pollen Tube/genetics/growth & development/metabolism ; Protein Kinases/genetics/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Reproduction ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-15
    Description: Lower Cretaceous pedogenic carbonates exposed in SE China have been dated by U–Pb isotope measurements on single zircons taken from intercalated volcanic rocks, and the ages integrated with existing stratigraphy. 13 C values of calcretes range from –7.0 to –3.0 and can be grouped into five episodes of increasing–decreasing values. The carbon isotope proxy derived from these palaeosol carbonates suggests p CO 2 mostly in the range 1000–2000 parts per million by volume (ppmV) at S ( z ) (CO 2 contributed by soil respiration) = 2500 ppmV and 25°C during the Hauterivian–Albian interval ( c . 30 Ma duration). Such atmospheric CO 2 levels are 4–8 times pre-industrial values, almost double those estimated by geochemical modelling and much higher than those established from stomatal indices in fossil plants. Rapid rises in p CO 2 are identified for early Hauterivian, middle Barremian, late Aptian, early Albian and middle Albian time, and rapid falls for intervening periods. These episodic cyclic changes in p CO 2 are not attributed to local tectonism and volcanism but rather to global changes. The relationship between reconstructed p CO 2 and the development of large igneous provinces (LIPs) remains unclear, although large-scale extrusion of basalt may well be responsible for relatively high atmospheric levels of this greenhouse gas. Suggested levels of relatively low p CO 2 correspond in timing to intervals of regional to global enrichment of marine carbon in sediments and negative carbon isotope ( 13 C) excursions characteristic of the oceanic anoxic events OAE1a (Selli Event), Kilian and Paquier events (constituting part of the OAE 1b cluster) and OAE1d. Short-term episodes of high p CO 2 coincide with negligible carbon isotope excursions associated with the Faraoni Event and the Jacob Event. Given that episodes of regional organic carbon burial would draw down CO 2 and negative 13 C excursions indicate the addition of isotopically light carbon to the ocean–atmosphere system, controls on the carbon cycle in controlling p CO 2 during Early Cretaceous time were clearly complex and made more so by atmospheric composition also being affected by changes in silicate weathering intensity.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-01-25
    Description: This paper describes an investigation of the dynamics and acoustics of cloud cavitation, the structures which are often formed by the periodic breakup and collapse of a sheet or vortex cavity. This form of cavitation frequently causes severe noise and damage, though the precise mechanism responsible for the enhancement of these adverse effects is not fully understood. In this paper, we investigate the large impulsive surface pressures generated by this type of cavitation and correlate these with the images from high-speed motion pictures. This reveals that several types of propagating structures (shock waves) are formed in a collapsing cloud and dictate the dynamics and acoustics of collapse. One type of shock wave structure is associated with the coherent collapse of a well-defined and separate cloud when it is convected into a region of higher pressure. This type of global structure causes the largest impulsive pressures and radiated noise. But two other types of structure, termed 'crescent-shaped regions' and leading-edge structures' occur during the less-coherent collapse of clouds. These local events are smaller and therefore produce less radiated noise but the interior pressure pulse magnitudes are almost as large as those produced by the global events. The ubiquity and severity of these propagating shock wave structures provides a new perspective on the mechanisms reponsible for noise and damage in cavitating flows involving clouds of bubbles. It would appear that shock wave dynamics rather than the collapse dynamics of single bubbles determine the damage and noise in many cavitating flows.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...