ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group (NPG)
  • 2005-2009  (7)
  • 1
    Publication Date: 2008-04-04
    Description: Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 x 10(-10)). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 x 10(-20) overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N'-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hung, Rayjean J -- McKay, James D -- Gaborieau, Valerie -- Boffetta, Paolo -- Hashibe, Mia -- Zaridze, David -- Mukeria, Anush -- Szeszenia-Dabrowska, Neonilia -- Lissowska, Jolanta -- Rudnai, Peter -- Fabianova, Eleonora -- Mates, Dana -- Bencko, Vladimir -- Foretova, Lenka -- Janout, Vladimir -- Chen, Chu -- Goodman, Gary -- Field, John K -- Liloglou, Triantafillos -- Xinarianos, George -- Cassidy, Adrian -- McLaughlin, John -- Liu, Geoffrey -- Narod, Steven -- Krokan, Hans E -- Skorpen, Frank -- Elvestad, Maiken Bratt -- Hveem, Kristian -- Vatten, Lars -- Linseisen, Jakob -- Clavel-Chapelon, Francoise -- Vineis, Paolo -- Bueno-de-Mesquita, H Bas -- Lund, Eiliv -- Martinez, Carmen -- Bingham, Sheila -- Rasmuson, Torgny -- Hainaut, Pierre -- Riboli, Elio -- Ahrens, Wolfgang -- Benhamou, Simone -- Lagiou, Pagona -- Trichopoulos, Dimitrios -- Holcatova, Ivana -- Merletti, Franco -- Kjaerheim, Kristina -- Agudo, Antonio -- Macfarlane, Gary -- Talamini, Renato -- Simonato, Lorenzo -- Lowry, Ray -- Conway, David I -- Znaor, Ariana -- Healy, Claire -- Zelenika, Diana -- Boland, Anne -- Delepine, Marc -- Foglio, Mario -- Lechner, Doris -- Matsuda, Fumihiko -- Blanche, Helene -- Gut, Ivo -- Heath, Simon -- Lathrop, Mark -- Brennan, Paul -- G9900432/Medical Research Council/United Kingdom -- R01 CA092039/CA/NCI NIH HHS/ -- England -- Nature. 2008 Apr 3;452(7187):633-7. doi: 10.1038/nature06885.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Agency for Research on Cancer (IARC), Lyon 69008, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18385738" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Human, Pair 15/*genetics ; Europe ; Genetic Predisposition to Disease/*genetics ; Genotype ; Humans ; Lung Neoplasms/*genetics ; Odds Ratio ; Polymorphism, Single Nucleotide/genetics ; Protein Subunits/*genetics ; Receptors, Nicotinic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-22
    Description: Investigation of the human antibody response to influenza virus infection has been largely limited to serology, with relatively little analysis at the molecular level. The 1918 H1N1 influenza virus pandemic was the most severe of the modern era. Recent work has recovered the gene sequences of this unusual strain, so that the 1918 pandemic virus could be reconstituted to display its unique virulence phenotypes. However, little is known about adaptive immunity to this virus. We took advantage of the 1918 virus sequencing and the resultant production of recombinant 1918 haemagglutinin (HA) protein antigen to characterize at the clonal level neutralizing antibodies induced by natural exposure of survivors to the 1918 pandemic virus. Here we show that of the 32 individuals tested that were born in or before 1915, each showed seroreactivity with the 1918 virus, nearly 90 years after the pandemic. Seven of the eight donor samples tested had circulating B cells that secreted antibodies that bound the 1918 HA. We isolated B cells from subjects and generated five monoclonal antibodies that showed potent neutralizing activity against 1918 virus from three separate donors. These antibodies also cross-reacted with the genetically similar HA of a 1930 swine H1N1 influenza strain, but did not cross-react with HAs of more contemporary human influenza viruses. The antibody genes had an unusually high degree of somatic mutation. The antibodies bound to the 1918 HA protein with high affinity, had exceptional virus-neutralizing potency and protected mice from lethal infection. Isolation of viruses that escaped inhibition suggested that the antibodies recognize classical antigenic sites on the HA surface. Thus, these studies demonstrate that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure-well into the tenth decade of life.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848880/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848880/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiaocong -- Tsibane, Tshidi -- McGraw, Patricia A -- House, Frances S -- Keefer, Christopher J -- Hicar, Mark D -- Tumpey, Terrence M -- Pappas, Claudia -- Perrone, Lucy A -- Martinez, Osvaldo -- Stevens, James -- Wilson, Ian A -- Aguilar, Patricia V -- Altschuler, Eric L -- Basler, Christopher F -- Crowe, James E Jr -- AI057158/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- CA55896/CA/NCI NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- R01 AI048677/AI/NIAID NIH HHS/ -- R01 AI048677-04/AI/NIAID NIH HHS/ -- U19 AI057229/AI/NIAID NIH HHS/ -- U19 AI62623/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057157-019002/AI/NIAID NIH HHS/ -- U54 AI57158/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Sep 25;455(7212):532-6. doi: 10.1038/nature07231. Epub 2008 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18716625" target="_blank"〉PubMed〈/a〉
    Keywords: Aged, 80 and over ; Animals ; Antibodies, Monoclonal/genetics/immunology/isolation & purification ; Antibodies, Viral/genetics/*immunology/*isolation & purification ; B-Lymphocytes/*immunology ; Cell Line ; Cross Reactions/immunology ; *Disease Outbreaks/history ; Dogs ; Female ; History, 20th Century ; Humans ; Influenza A Virus, H1N1 Subtype/genetics/*immunology/physiology ; Influenza, Human/*immunology/virology ; Kinetics ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Neutralization Tests ; *Survival
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-11
    Description: Terrestrial vegetation, especially tropical rain forest, releases vast quantities of volatile organic compounds (VOCs) to the atmosphere, which are removed by oxidation reactions and deposition of reaction products. The oxidation is mainly initiated by hydroxyl radicals (OH), primarily formed through the photodissociation of ozone. Previously it was thought that, in unpolluted air, biogenic VOCs deplete OH and reduce the atmospheric oxidation capacity. Conversely, in polluted air VOC oxidation leads to noxious oxidant build-up by the catalytic action of nitrogen oxides (NO(x) = NO + NO2). Here we report aircraft measurements of atmospheric trace gases performed over the pristine Amazon forest. Our data reveal unexpectedly high OH concentrations. We propose that natural VOC oxidation, notably of isoprene, recycles OH efficiently in low-NO(x) air through reactions of organic peroxy radicals. Computations with an atmospheric chemistry model and the results of laboratory experiments suggest that an OH recycling efficiency of 40-80 per cent in isoprene oxidation may be able to explain the high OH levels we observed in the field. Although further laboratory studies are necessary to explore the chemical mechanism responsible for OH recycling in more detail, our results demonstrate that the biosphere maintains a remarkable balance with the atmospheric environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Butler, T M -- Crowley, J N -- Dillon, T J -- Fischer, H -- Ganzeveld, L -- Harder, H -- Lawrence, M G -- Martinez, M -- Taraborrelli, D -- Williams, J -- England -- Nature. 2008 Apr 10;452(7188):737-40. doi: 10.1038/nature06870.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Chemistry, 27 Becherweg, 55128 Mainz, Germany. lelieveld@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18401407" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Atmosphere/*chemistry ; Butadienes/metabolism ; French Guiana ; Guyana ; Hemiterpenes/metabolism ; Hydroxyl Radical/metabolism ; Nitric Oxide/metabolism ; Oxidation-Reduction ; Ozone/analysis ; Pentanes/metabolism ; Suriname ; Trees/*metabolism ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-01-25
    Description: Light and gibberellins (GAs) mediate many essential and partially overlapping plant developmental processes. DELLA proteins are GA-signalling repressors that block GA-induced development. GA induces degradation of DELLA proteins via the ubiquitin/proteasome pathway, but light promotes accumulation of DELLA proteins by reducing GA levels. It was proposed that DELLA proteins restrain plant growth largely through their effect on gene expression. However, the precise mechanism of their function in coordinating GA signalling and gene expression remains unknown. Here we characterize a nuclear protein interaction cascade mediating transduction of GA signals to the activity regulation of a light-responsive transcription factor. In the absence of GA, nuclear-localized DELLA proteins accumulate to higher levels, interact with phytochrome-interacting factor 3 (PIF3, a bHLH-type transcription factor) and prevent PIF3 from binding to its target gene promoters and regulating gene expression, and therefore abrogate PIF3-mediated light control of hypocotyl elongation. In the presence of GA, GID1 proteins (GA receptors) elevate their direct interaction with DELLA proteins in the nucleus, trigger DELLA protein's ubiquitination and proteasome-mediated degradation, and thus release PIF3 from the negative effect of DELLA proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562044/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562044/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Suhua -- Martinez, Cristina -- Gusmaroli, Giuliana -- Wang, Yu -- Zhou, Junli -- Wang, Feng -- Chen, Liying -- Yu, Lu -- Iglesias-Pedraz, Juan M -- Kircher, Stefan -- Schafer, Eberhard -- Fu, Xiangdong -- Fan, Liu-Min -- Deng, Xing Wang -- R01 GM047850/GM/NIGMS NIH HHS/ -- R01 GM047850-12/GM/NIGMS NIH HHS/ -- R37 GM047850/GM/NIGMS NIH HHS/ -- R37 GM047850-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 24;451(7177):475-9. doi: 10.1038/nature06448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18216856" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/drug effects/*growth & development/metabolism/*radiation effects ; Arabidopsis Proteins/antagonists & inhibitors/*metabolism ; Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors/metabolism ; Gibberellins/*pharmacology ; Hypocotyl/drug effects/growth & development/radiation effects ; *Light ; Nuclear Proteins/metabolism ; Protein Binding ; Repressor Proteins/metabolism ; Signal Transduction/drug effects/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-05-09
    Description: Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and bone. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress favourably alters material properties. A few mechanosensitive polymers with this property have been developed; but their active response is mediated through non-covalent processes, which may limit the extent to which properties can be modified and the long-term stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups-so-called mechanophores-that the directional nature of mechanical forces can selectively break and re-form covalent bonds. We now demonstrate that such force-induced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, Douglas A -- Hamilton, Andrew -- Yang, Jinglei -- Cremar, Lee D -- Van Gough, Dara -- Potisek, Stephanie L -- Ong, Mitchell T -- Braun, Paul V -- Martinez, Todd J -- White, Scott R -- Moore, Jeffrey S -- Sottos, Nancy R -- England -- Nature. 2009 May 7;459(7243):68-72. doi: 10.1038/nature07970.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424152" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-04-03
    Description: CRM1 (also known as XPO1 and exportin 1) mediates nuclear export of hundreds of proteins through the recognition of the leucine-rich nuclear export signal (LR-NES). Here we present the 2.9 A structure of CRM1 bound to snurportin 1 (SNUPN). Snurportin 1 binds CRM1 in a bipartite manner by means of an amino-terminal LR-NES and its nucleotide-binding domain. The LR-NES is a combined alpha-helical-extended structure that occupies a hydrophobic groove between two CRM1 outer helices. The LR-NES interface explains the consensus hydrophobic pattern, preference for intervening electronegative residues and inhibition by leptomycin B. The second nuclear export signal epitope is a basic surface on the snurportin 1 nucleotide-binding domain, which binds an acidic patch on CRM1 adjacent to the LR-NES site. Multipartite recognition of individually weak nuclear export signal epitopes may be common to CRM1 substrates, enhancing CRM1 binding beyond the generally low affinity LR-NES. Similar energetic construction is also used in multipartite nuclear localization signals to provide broad substrate specificity and rapid evolution in nuclear transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Xiuhua -- Biswas, Anindita -- Suel, Katherine E -- Jackson, Laurie K -- Martinez, Rita -- Gu, Hongmei -- Chook, Yuh Min -- 5-T32-GM008297/GM/NIGMS NIH HHS/ -- R01 GM069909/GM/NIGMS NIH HHS/ -- R01GM069909/GM/NIGMS NIH HHS/ -- R01GM069909-03S1/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 30;458(7242):1136-41. doi: 10.1038/nature07975. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, Texas 75390-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339969" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Crystallography, X-Ray ; Epitopes ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Karyopherins/*chemistry/*metabolism ; Leucine/*metabolism ; Models, Molecular ; Nuclear Export Signals/*physiology ; Protein Binding/drug effects ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; snRNP Core Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-02-17
    Description: Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair. In addition, antigens present in necrotic cells can sometimes provoke a specific immune response and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection. In the mouse, the CD8alpha+ subset of dendritic cells phagocytoses dead cell remnants and cross-primes CD8+ T cells against cell-associated antigens. Here we show that CD8alpha+ dendritic cells use CLEC9A (also known as DNGR-1), a recently-characterized C-type lectin, to recognize a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair the uptake of necrotic cell material by CD8+ dendritic cells, but specifically reduces cross-presentation of dead-cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue in its intracellular tail that allows the recruitment and activation of the tyrosine kinase SYK, which is also essential for cross-presentation of dead-cell-associated antigens. Thus, CLEC9A functions as a SYK-coupled C-type lectin receptor to mediate sensing of necrosis by the principal dendritic-cell subset involved in regulating cross-priming to cell-associated antigens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671489/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671489/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sancho, David -- Joffre, Olivier P -- Keller, Anna M -- Rogers, Neil C -- Martinez, Dolores -- Hernanz-Falcon, Patricia -- Rosewell, Ian -- Reis e Sousa, Caetano -- A3598/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Apr 16;458(7240):899-903. doi: 10.1038/nature07750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Laboratory, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19219027" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD8/metabolism ; CD8-Positive T-Lymphocytes/immunology ; Cells, Cultured ; Cross-Priming/immunology ; Dendritic Cells/*immunology/*metabolism ; Humans ; Lectins, C-Type/deficiency/genetics/*metabolism ; Ligands ; Mice ; Necrosis/*immunology/*metabolism ; Phagocytosis ; Receptors, Immunologic/deficiency/genetics/*metabolism ; Receptors, Mitogen/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...