ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-05-28
    Description: Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small-cell lung carcinomas in smokers being the predominant form of the disease. Although previous studies have identified important common somatic mutations in lung cancers, they have primarily focused on a limited set of genes and have thus provided a constrained view of the mutational spectrum. Recent cancer sequencing efforts have used next-generation sequencing technologies to provide a genome-wide view of mutations in leukaemia, breast cancer and cancer cell lines. Here we present the complete sequences of a primary lung tumour (60x coverage) and adjacent normal tissue (46x). Comparing the two genomes, we identify a wide variety of somatic variations, including 〉50,000 high-confidence single nucleotide variants. We validated 530 somatic single nucleotide variants in this tumour, including one in the KRAS proto-oncogene and 391 others in coding regions, as well as 43 large-scale structural variations. These constitute a large set of new somatic mutations and yield an estimated 17.7 per megabase genome-wide somatic mutation rate. Notably, we observe a distinct pattern of selection against mutations within expressed genes compared to non-expressed genes and in promoter regions up to 5 kilobases upstream of all protein-coding genes. Furthermore, we observe a higher rate of amino acid-changing mutations in kinase genes. We present a comprehensive view of somatic alterations in a single lung tumour, and provide the first evidence, to our knowledge, of distinct selective pressures present within the tumour environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, William -- Jiang, Zhaoshi -- Liu, Jinfeng -- Haverty, Peter M -- Guan, Yinghui -- Stinson, Jeremy -- Yue, Peng -- Zhang, Yan -- Pant, Krishna P -- Bhatt, Deepali -- Ha, Connie -- Johnson, Stephanie -- Kennemer, Michael I -- Mohan, Sankar -- Nazarenko, Igor -- Watanabe, Colin -- Sparks, Andrew B -- Shames, David S -- Gentleman, Robert -- de Sauvage, Frederic J -- Stern, Howard -- Pandita, Ajay -- Ballinger, Dennis G -- Drmanac, Radoje -- Modrusan, Zora -- Seshagiri, Somasekar -- Zhang, Zemin -- England -- Nature. 2010 May 27;465(7297):473-7. doi: 10.1038/nature09004.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505728" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Non-Small-Cell Lung/*genetics ; DNA Mutational Analysis ; Genome, Human/*genetics ; Humans ; Lung Neoplasms/*genetics ; Male ; Middle Aged ; Models, Biological ; Point Mutation/*genetics ; Selection, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-21
    Description: Haemostasis in the arteriolar circulation mediated by von Willebrand factor (VWF) binding to platelets is an example of an adhesive interaction that must withstand strong hydrodynamic forces acting on cells. VWF is a concatenated, multifunctional protein that has binding sites for platelets as well as subendothelial collagen. Binding of the A1 domain in VWF to the glycoprotein Ib alpha subunit (GPIbalpha) on the surface of platelets mediates crosslinking of platelets to one another and the formation of a platelet plug for arterioles. The importance of VWF is illustrated by its mutation in von Willebrand disease, a bleeding diathesis. Here, we describe a novel mechanochemical specialization of the A1-GPIbalpha bond for force-resistance. We have developed a method that enables, for the first time, repeated measurements of the binding and unbinding of a receptor and ligand in a single molecule (ReaLiSM). We demonstrate two states of the receptor-ligand bond, that is, a flex-bond. One state is seen at low force; a second state begins to engage at 10 pN with a approximately 20-fold longer lifetime and greater force resistance. The lifetimes of the two states, how force exponentiates lifetime, and the kinetics of switching between the two states are all measured. For the first time, single-molecule measurements on this system are in agreement with bulk phase measurements. The results have important implications not only for how platelets bound to VWF are able to resist force to plug arterioles, but also how increased flow activates platelet plug formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongseong -- Zhang, Cheng-Zhong -- Zhang, Xiaohui -- Springer, Timothy A -- HL-48675/HL/NHLBI NIH HHS/ -- P01 HL048675/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):992-5. doi: 10.1038/nature09295.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725043" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arterioles/cytology/*physiology ; Blood Coagulation/*physiology ; Blood Platelets/chemistry/cytology/*metabolism ; Cell Line ; Hemorheology ; Humans ; Kinetics ; Ligands ; Membrane Glycoproteins/chemistry/*metabolism ; Mice ; Models, Chemical ; Models, Molecular ; Platelet Glycoprotein GPIb-IX Complex ; Protein Binding ; Protein Structure, Tertiary ; Tensile Strength ; von Willebrand Factor/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-11
    Description: The anaphase-promoting complex or cyclosome (APC/C) is an unusually large E3 ubiquitin ligase responsible for regulating defined cell cycle transitions. Information on how its 13 constituent proteins are assembled, and how they interact with co-activators, substrates and regulatory proteins is limited. Here, we describe a recombinant expression system that allows the reconstitution of holo APC/C and its sub-complexes that, when combined with electron microscopy, mass spectrometry and docking of crystallographic and homology-derived coordinates, provides a precise definition of the organization and structure of all essential APC/C subunits, resulting in a pseudo-atomic model for 70% of the APC/C. A lattice-like appearance of the APC/C is generated by multiple repeat motifs of most APC/C subunits. Three conserved tetratricopeptide repeat (TPR) subunits (Cdc16, Cdc23 and Cdc27) share related superhelical homo-dimeric architectures that assemble to generate a quasi-symmetrical structure. Our structure explains how this TPR sub-complex, together with additional scaffolding subunits (Apc1, Apc4 and Apc5), coordinate the juxtaposition of the catalytic and substrate recognition module (Apc2, Apc11 and Apc10 (also known as Doc1)), and TPR-phosphorylation sites, relative to co-activator, regulatory proteins and substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schreiber, Anne -- Stengel, Florian -- Zhang, Ziguo -- Enchev, Radoslav I -- Kong, Eric H -- Morris, Edward P -- Robinson, Carol V -- da Fonseca, Paula C A -- Barford, David -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Feb 10;470(7333):227-32. doi: 10.1038/nature09756.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21307936" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc5 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome ; Biocatalysis ; Cell Line ; Holoenzymes/chemistry/metabolism/ultrastructure ; Mass Spectrometry ; Microscopy, Electron ; Models, Molecular ; Molecular Weight ; Protein Binding ; Protein Conformation ; Protein Subunits/chemistry/isolation & purification/metabolism ; Recombinant Proteins/chemistry/metabolism/ultrastructure ; Saccharomyces cerevisiae/chemistry/genetics ; Saccharomyces cerevisiae Proteins/chemistry/isolation & ; purification/metabolism/ultrastructure ; Scattering, Radiation ; Schizosaccharomyces/chemistry ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin-Protein Ligase Complexes/*chemistry/*metabolism/ultrastructure ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, X Z -- Wan, C H -- Gao, X L -- Wang, J M -- Tan, X Y -- England -- Nature. 2013 Sep 26;501(7468):E1-2. doi: 10.1038/nature12590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. xzzhang@tsinghua.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24067717" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-27
    Description: Aberrant activation of oncogenes or loss of tumour suppressor genes opposes malignant transformation by triggering a stable arrest in cell growth, which is termed cellular senescence. This process is finely tuned by both cell-autonomous and non-cell-autonomous mechanisms that regulate the entry of tumour cells to senescence. Whether tumour-infiltrating immune cells can oppose senescence is unknown. Here we show that at the onset of senescence, PTEN null prostate tumours in mice are massively infiltrated by a population of CD11b(+)Gr-1(+) myeloid cells that protect a fraction of proliferating tumour cells from senescence, thus sustaining tumour growth. Mechanistically, we found that Gr-1(+) cells antagonize senescence in a paracrine manner by interfering with the senescence-associated secretory phenotype of the tumour through the secretion of interleukin-1 receptor antagonist (IL-1RA). Strikingly, Pten-loss-induced cellular senescence was enhanced in vivo when Il1ra knockout myeloid cells were adoptively transferred to PTEN null mice. Therapeutically, docetaxel-induced senescence and efficacy were higher in PTEN null tumours when the percentage of tumour-infiltrating CD11b(+)Gr-1(+) myeloid cells was reduced using an antagonist of CXC chemokine receptor 2 (CXCR2). Taken together, our findings identify a novel non-cell-autonomous network, established by innate immunity, that controls senescence evasion and chemoresistance. Targeting this network provides novel opportunities for cancer therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Mitri, Diletta -- Toso, Alberto -- Chen, Jing Jing -- Sarti, Manuela -- Pinton, Sandra -- Jost, Tanja Rezzonico -- D'Antuono, Rocco -- Montani, Erica -- Garcia-Escudero, Ramon -- Guccini, Ilaria -- Da Silva-Alvarez, Sabela -- Collado, Manuel -- Eisenberger, Mario -- Zhang, Zhe -- Catapano, Carlo -- Grassi, Fabio -- Alimonti, Andrea -- England -- Nature. 2014 Nov 6;515(7525):134-7. doi: 10.1038/nature13638. Epub 2014 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2]. ; 1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2] Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne CH1011, Switzerland. ; Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland. ; Institute for Research in Biomedicine (IRB), Bellinzona CH6500, Switzerland. ; 1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2] Molecular Oncology Unit, CIEMAT, 28040 Madrid, Spain. ; Laboratory of Stem Cells in Cancer and Aging, (stemCHUS) Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), E15706 Santiago de Compostela, Spain. ; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231-1000, USA. ; Divisions of BioStatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231-1000, USA. ; 1] Institute for Research in Biomedicine (IRB), Bellinzona CH6500, Switzerland [2] Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20100, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25156255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Aging/drug effects ; *Cell Movement ; Disease Progression ; Drug Resistance, Neoplasm ; Humans ; Immunity, Innate ; Interleukin 1 Receptor Antagonist Protein/deficiency/metabolism/secretion ; Interleukin-1alpha/immunology/metabolism ; Male ; Mice ; Myeloid Cells/*cytology/*metabolism/transplantation ; PTEN Phosphohydrolase/deficiency/genetics/metabolism ; Prostatic Neoplasms/drug therapy/immunology/metabolism/*pathology ; Receptors, Chemokine/*metabolism ; Receptors, Interleukin-8B/antagonists & inhibitors ; Taxoids/pharmacology ; Tumor Escape ; Tumor Microenvironment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-18
    Description: Chronic neuroinflammation is a common feature of the ageing brain and some neurodegenerative disorders. However, the molecular and cellular mechanisms underlying the regulation of innate immunity in the central nervous system remain elusive. Here we show that the astrocytic dopamine D2 receptor (DRD2) modulates innate immunity through alphaB-crystallin (CRYAB), which is known to suppress neuroinflammation. We demonstrate that knockout mice lacking Drd2 showed remarkable inflammatory response in multiple central nervous system regions and increased the vulnerability of nigral dopaminergic neurons to neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. Astrocytes null for Drd2 became hyper-responsive to immune stimuli with a marked reduction in the level of CRYAB. Preferential ablation of Drd2 in astrocytes robustly activated astrocytes in the substantia nigra. Gain- or loss-of-function studies showed that CRYAB is critical for DRD2-mediated modulation of innate immune response in astrocytes. Furthermore, treatment of wild-type mice with the selective DRD2 agonist quinpirole increased resistance of the nigral dopaminergic neurons to MPTP through partial suppression of inflammation. Our study indicates that astrocytic DRD2 activation normally suppresses neuroinflammation in the central nervous system through a CRYAB-dependent mechanism, and provides a new strategy for targeting the astrocyte-mediated innate immune response in the central nervous system during ageing and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shao, Wei -- Zhang, Shu-zhen -- Tang, Mi -- Zhang, Xin-hua -- Zhou, Zheng -- Yin, Yan-qing -- Zhou, Qin-bo -- Huang, Yuan-yuan -- Liu, Ying-jun -- Wawrousek, Eric -- Chen, Teng -- Li, Sheng-bin -- Xu, Ming -- Zhou, Jiang-ning -- Hu, Gang -- Zhou, Jia-wei -- England -- Nature. 2013 Feb 7;494(7435):90-4. doi: 10.1038/nature11748. Epub 2012 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23242137" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology ; Animals ; Astrocytes/drug effects/*immunology/*metabolism ; Dopaminergic Neurons/drug effects ; Immunity, Innate/drug effects ; Inflammation/chemically induced/genetics/*immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Microglia/cytology/immunology ; Neuroprotective Agents/metabolism ; Quinpirole/pharmacology ; Receptors, Dopamine D2/agonists/deficiency/genetics/*metabolism ; Substantia Nigra/cytology/drug effects ; alpha-Crystallin B Chain/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-05
    Description: Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dai, Xingliang -- Zhang, Zhenxing -- Jin, Yizheng -- Niu, Yuan -- Cao, Hujia -- Liang, Xiaoyong -- Chen, Liwei -- Wang, Jianpu -- Peng, Xiaogang -- England -- Nature. 2014 Nov 6;515(7525):96-9. doi: 10.1038/nature13829. Epub 2014 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Chemistry of High-Performance &Novel Materials, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. ; Center for Chemistry of High-Performance &Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. ; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou 215123, China. ; Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM), National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363773" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-05
    Description: Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doria-Rose, Nicole A -- Schramm, Chaim A -- Gorman, Jason -- Moore, Penny L -- Bhiman, Jinal N -- DeKosky, Brandon J -- Ernandes, Michael J -- Georgiev, Ivelin S -- Kim, Helen J -- Pancera, Marie -- Staupe, Ryan P -- Altae-Tran, Han R -- Bailer, Robert T -- Crooks, Ema T -- Cupo, Albert -- Druz, Aliaksandr -- Garrett, Nigel J -- Hoi, Kam H -- Kong, Rui -- Louder, Mark K -- Longo, Nancy S -- McKee, Krisha -- Nonyane, Molati -- O'Dell, Sijy -- Roark, Ryan S -- Rudicell, Rebecca S -- Schmidt, Stephen D -- Sheward, Daniel J -- Soto, Cinque -- Wibmer, Constantinos Kurt -- Yang, Yongping -- Zhang, Zhenhai -- NISC Comparative Sequencing Program -- Mullikin, James C -- Binley, James M -- Sanders, Rogier W -- Wilson, Ian A -- Moore, John P -- Ward, Andrew B -- Georgiou, George -- Williamson, Carolyn -- Abdool Karim, Salim S -- Morris, Lynn -- Kwong, Peter D -- Shapiro, Lawrence -- Mascola, John R -- P01 AI082362/AI/NIAID NIH HHS/ -- R01 AI100790/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 May 1;509(7498):55-62. doi: 10.1038/nature13036. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; 1] Department of Biochemistry, Columbia University, New York, New York 10032, USA [2]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [4]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa. ; Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; Torrey Pines Institute, San Diego, California 92037, USA. ; Weill Medical College of Cornell University, New York, New York 10065, USA. ; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa. ; Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; Department of Biochemistry, Columbia University, New York, New York 10032, USA. ; 1] NISC Comparative Sequencing program, National Institutes of Health, Bethesda, Maryland 20892, USA [2] NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, Netherlands. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA [2] Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA [3] Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Department of Epidemiology, Columbia University, New York, New York 10032, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Department of Biochemistry, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590074" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity/genetics/immunology ; Antigens, CD4/immunology/metabolism ; B-Lymphocytes/cytology/immunology/metabolism ; Binding Sites/immunology ; Cell Lineage ; Complementarity Determining Regions/chemistry/genetics/immunology ; Epitope Mapping ; Epitopes, B-Lymphocyte/chemistry/immunology ; Evolution, Molecular ; HIV Antibodies/chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp160/*chemistry/*immunology ; HIV Infections/immunology ; HIV-1/chemistry/immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Protein Structure, Tertiary ; Somatic Hypermutation, Immunoglobulin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-02-19
    Description: The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial and small sets of nuclear markers have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans. However, until now, fully sequenced human genomes have been limited to recently diverged populations. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890430/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890430/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuster, Stephan C -- Miller, Webb -- Ratan, Aakrosh -- Tomsho, Lynn P -- Giardine, Belinda -- Kasson, Lindsay R -- Harris, Robert S -- Petersen, Desiree C -- Zhao, Fangqing -- Qi, Ji -- Alkan, Can -- Kidd, Jeffrey M -- Sun, Yazhou -- Drautz, Daniela I -- Bouffard, Pascal -- Muzny, Donna M -- Reid, Jeffrey G -- Nazareth, Lynne V -- Wang, Qingyu -- Burhans, Richard -- Riemer, Cathy -- Wittekindt, Nicola E -- Moorjani, Priya -- Tindall, Elizabeth A -- Danko, Charles G -- Teo, Wee Siang -- Buboltz, Anne M -- Zhang, Zhenhai -- Ma, Qianyi -- Oosthuysen, Arno -- Steenkamp, Abraham W -- Oostuisen, Hermann -- Venter, Philippus -- Gajewski, John -- Zhang, Yu -- Pugh, B Franklin -- Makova, Kateryna D -- Nekrutenko, Anton -- Mardis, Elaine R -- Patterson, Nick -- Pringle, Tom H -- Chiaromonte, Francesca -- Mullikin, James C -- Eichler, Evan E -- Hardison, Ross C -- Gibbs, Richard A -- Harkins, Timothy T -- Hayes, Vanessa M -- R01 GM087472/GM/NIGMS NIH HHS/ -- R01 HG004909/HG/NHGRI NIH HHS/ -- R01GM087472/GM/NIGMS NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):943-7. doi: 10.1038/nature08795.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pennsylvania State University, Center for Comparative Genomics and Bioinformatics, 310 Wartik Lab, University Park, Pennsylvania 16802, USA. scs@bx.psu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164927" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group/*genetics ; Asian Continental Ancestry Group/genetics ; Ethnic Groups/*genetics ; European Continental Ancestry Group/genetics ; Exons/genetics ; Genetics, Medical ; Genome, Human/*genetics ; Humans ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; South Africa/ethnology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-02-26
    Description: Cambrian fossil Lagerstatten preserving soft-bodied organisms have contributed much towards our understanding of metazoan origins. Lobopodians are a particularly interesting group that diversified and flourished in the Cambrian seas. Resembling 'worms with legs', they have long attracted much attention in that they may have given rise to both Onychophora (velvet worms) and Tardigrada (water bears), as well as to arthropods in general. Here we describe Diania cactiformis gen. et sp. nov. as an 'armoured' lobopodian from the Chengjiang fossil Lagerstatte (Cambrian Stage 3), Yunnan, southwestern China. Although sharing features with other typical lobopodians, it is remarkable for possessing robust and probably sclerotized appendages, with what appear to be articulated elements. In terms of limb morphology it is therefore closer to the arthropod condition, to our knowledge, than any lobopodian recorded until now. Phylogenetic analysis recovers it in a derived position, close to Arthropoda; thus, it seems to belong to a grade of organization close to the point of becoming a true arthropod. Further, D. cactiformis could imply that arthropodization (sclerotization of the limbs) preceded arthrodization (sclerotization of the body). Comparing our fossils with other lobopodian appendage morphologies--see Kerygmachela, Jianshanopodia and Megadictyon--reinforces the hypothesis that the group as a whole is paraphyletic, with different taxa expressing different grades of arthropodization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jianni -- Steiner, Michael -- Dunlop, Jason A -- Keupp, Helmut -- Shu, Degan -- Ou, Qiang -- Han, Jian -- Zhang, Zhifei -- Zhang, Xingliang -- England -- Nature. 2011 Feb 24;470(7335):526-30. doi: 10.1038/nature09704.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Early Life Institute, State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China. liujianni@126.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/*anatomy & histology/*classification ; China ; Extinction, Biological ; Extremities/*anatomy & histology ; *Fossils ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...