ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The study of the ordered molecular structure of LB films was one of the first applications of the scanning tunnelling microscope (STM) to organic materials4'6. There has been some controversy over the interpretation of the images recorded on these rather thick films (-50 A) because classical ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Most of the marine biotic crises that occurred during the hot Mesozoic era have been linked to episodes of extreme warmth(1,2). Others, however, may have occurred during cooler intervals that interrupted Cretaceous greenhouse warmth(3-5). There are some indications of cooling in the late Aptian(6-8) (116-114 Myr ago), but it has not been definitively linked to biotic crisis. Here we assess the timing and magnitude of late Aptian cooling and its association with biotic crises using a suite of geochemical and micropalaeontological assessments from a marine sediment core from the North Atlantic Ocean as well as global biogeochemical modelling. Sea surface temperatures derived from the TEX86 proxy suggest that surface waters cooled by about 5 degrees C during the two million years, coincident with a positive delta C-13 excursion of approximately 2 parts per thousand in carbonates and organic carbon. Surface productivity was enhanced during this period, but the abundance of planktonic foraminifera and nannoconid phytoplankton declined. Our simulations with a biogeochemical model indicate that the delta C-13 excursion associated with the cooling could be explained by the burial of about 812,000 gigatons of carbon over 2.5 million years. About 50% of the this carbon burial occurred in the Atlantic, Southern and Tethys ocean basins. We conclude that global cooling during greenhouse conditions can cause perturbations to marine ecosystems and biogeochemical cycles at scales comparable to those associated with global warming
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-10
    Description: The tropics have been suggested as the drivers of global ocean and atmosphere circulation and biogeochemical cycling during the extreme warmth of the Cretaceous period1, 2; but the links between orbital forcing, freshwater runoff and the biogeochemistry of continental margins in extreme greenhouse conditions are not fully understood. Here we present Cretaceous records of geochemical tracers for freshwater runoff obtained from a sediment core off the Ivory Coast that indicate that alternating periods of arid and humid African climate were driven by orbital precession. Our simulations of the precession-driven patterns of river discharge with a global climate model suggest that ocean anoxia and black shale sedimentation were directly caused by high river discharge, and occurred specifically when the northern equinox coincided with perihelion (the minimum distance between the Sun and the Earth). We conclude that, in a warm climate, the oceans off tropical continental margins respond rapidly and sensitively to even modest changes in river discharge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...