ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 326 (1987), S. 373-375 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Hurricane Gloria (1985) began to form very late in the hurricane season off the Cape Verde Islands1. Gloria moved nearly due westward with the trade winds to about the Leeward Islands, and then turned north-west toward the Sargasso Sea. On 25 September the minimum central pressure fell to 919 mbar, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 326 (6111). pp. 373-375.
    Publication Date: 2018-03-02
    Description: Hurricanes and other strong storms can cause important decreases in sea surface temperature by means of vertical mixing within the upper ocean, and by air–sea heat exchange. Here we use satellite-derived infrared images of the western North Atlantic to study sea surface cooling caused by hurricane Gloria (1985). Significant regional variations in sea surface cooling are well correlated with hydrographic conditions. The greatest cooling (up to 5°C) occurred in slope waters north of the Gulf Stream where the seasonal thermocline is shallowest and most compressed; moderate cooling (up to 3 °C) occurred in the open Sargasso Sea where the thermocline is deeper and more diffused; little or no cooling occurred in shallow coastal waters (bottom depth less than 20 m) which were isothermal before the passage of hurricane Gloria. There is a pronounced right-side asymmetry of sea surface cooling with stronger (by a factor of 4) and more extensive (by a factor of 3) cooling found on the right side of the hurricane track. These qualitative results are consistent with the notion that vertical mixing within the upper ocean is the dominant sea surface cooling mechanism of hurricanes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Oxygen minimum zones are expanding globally, and at present account for around 20–40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox—anaerobic ammonium oxidation with nitrite—are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here, we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen minimum zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Climate model predictions1, 2 and observations3, 4 reveal regional declines in oceanic dissolved oxygen, which are probably influenced by global warming5. Studies indicate ongoing dissolved oxygen depletion and vertical expansion of the oxygen minimum zone (OMZ) in the tropical northeast Atlantic Ocean6, 7. OMZ shoaling may restrict the usable habitat of billfishes and tunas to a narrow surface layer8, 9. We report a decrease in the upper ocean layer exceeding 3.5 ml l−1 dissolved oxygen at a rate of ≤1 m yr−1 in the tropical northeast Atlantic (0–25° N, 12–30° W), amounting to an annual habitat loss of ~5.95×1013 m3, or 15% for the period 1960–2010. Habitat compression and associated potential habitat loss was validated using electronic tagging data from 47 blue marlin. This phenomenon increases vulnerability to surface fishing gear for billfishes and tunas8, 9, and may be associated with a 10–50% worldwide decline of pelagic predator diversity10. Further expansion of the Atlantic OMZ along with overfishing may threaten the sustainability of these valuable pelagic fisheries and marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...