ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (3)
  • Nature Publishing Group  (1)
  • 1
    Publication Date: 2013-10-22
    Description: We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral) from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the winter rainfall zone (WRZ) of South Africa occurred during the "Little Ice Age" (700–100 cal years BP) most likely in response to a northward shift of the austral westerlies. Wet phases and strengthened coastal water upwellings are companied by a decrease of Agulhas water leakage into the South Atlantic and a reduced dust incursion over Antarctica, as indicated in previous studies. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS) between 9000 and 5500 cal years BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the eastern South Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in the South Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-18
    Description: We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral) from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off Western South Africa. The wettest episode of the Holocene in the Winter Rainfall Zone (WRZ) of South Africa occurred during the "Little Ice Age" (700–100 yr BP). Wet phases were accompanied by strengthened coastal water upwellings, a decrease of Agulhas water leakage into the Southern Atlantic, and a reduced dust incursion over Antarctica. A continuous aridification trend in the WRZ and a weakening of the Southern Benguela Upwelling System (BUS) between 9000 and 5500 yr BP parallel with evidence of a poleward shift of the austral mid-latitude westerlies and an enhanced leakage of warm Agulhas water into the Southeastern Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies and changes in the amount of Agulhas water leakage into the Southern BUS. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies that may result in a decline of rainfall over Southwest Africa and a weakened upwelling with implication for phytoplankton productivity and fish stocks. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the Southern BUS may affect coastal fog formation that is critical as moisture source for the endemic flora of the Namaqualand.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-07
    Description: We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes and grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral) from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the Winter Rainfall Zone (WRZ) of South Africa occurred during the "Little Ice Age" (700–100 yr BP). Wet phases were accompanied by strengthened coastal water upwellings, a decrease of Agulhas water leakage into the southern Atlantic, and a reduced dust incursion over Antarctica. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS) between 9000 and 5500 yr BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the southeastern Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in southern Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies that may result in a decline of rainfall over southwest Africa and a weakened upwelling with implication for phytoplankton productivity and fish stocks. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation that is critical as moisture source for the endemic flora of the Namaqualand.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-04
    Description: Zircon is a common mineral in continental crustal rocks. As it is not easily altered in processes such as erosion or transport, this mineral is often used in the reconstruction of geological processes such as the formation and evolution of the continents. Zircon can also survive under conditions of the Earth’s mantle, and rare cases of zircons crystallizing in the mantle significantly before their entrainment into magma and eruption to the surface have been reported1,2,3. Here we analyse the isotopic and trace element compositions of large zircons of gem quality from the Eger rift, Bohemian massif, and find that they are derived from the mantle. (U–Th)/He analyses suggest that the zircons as well as their host basalts erupted between 29 and 24 million years ago, but fragments from the same xenocrysts reveal U–Pb ages between 51 and 83 million years. We note a lack of older volcanism and of fragments from the lower crust, which suggests that crustal residence time before eruption is negligible and that most rock fragments found in similar basalts from adjacent volcanic fields equilibrated under mantle conditions. We conclude that a specific chemical environment in this part of the Earth’s upper mantle allowed the zircons to remain intact for about 20–60 million years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...