ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU, meeting of the European Geophysical Union, Wien, 2014-04-28-2014-05-02Viena, EGU
    Publication Date: 2014-05-19
    Description: Rivers represent a transition zone between terrestric and aquatic environments, as well as a transition zone between methane rich and methane poor environments. Methane concentrations in freshwater systems are in general higher than in marine systems. The Elbe River is one of the important rivers draining into the North Sea, as is the Lena River draining into the Laptev Sea. High methane concentrations have been observed within both rivers, and additional hot spots in the Lena Delta. However due to different stratification patterns in the mixing zones, the further fate of methane in the North Sea and the Laptev Sea is different. Methane consuming bacteria are known from both environments. However, in the transition zone between marine and limnic systems the shift in salinity imposes an osmotic stress for most organisms. In this study we want to compare the environmental data obtained in both estuaries with the methane oxidation to elucidate the efficiency of the respective methane oxidizing bacteria.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-20
    Description: Numerous articles have recently reported on gas seepage offshore Svalbard, because of gas emission that may be due to gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. Here we report on findings for a much broader extent of seepage in water depths at and shallower than the gas hydrate stability zone. More than a thousand gas seepage sites imaged as acoustic flares generate a hundreds of kilometer-long plume. Most flares were detected in the vicinity of the Hornsund Fracture Zone. We postulate that the gas ascends from depth along the fracture zone; its discharge is focused on bathymetric highs and is constrained by glaciomarine and Holocene sediments in the troughs. A fraction of this dissolved methane (~1.8%) was oxidized whereas a minor but measureable fraction (0.05%) was transferred into the atmosphere in August 2015. The large scale seepage reported here is not linked to anthropogenic warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...