ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    In:  EPIC3Estuarine Coastal and Shelf Science, ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    Publication Date: 2015-04-28
    Description: River estuaries are responsible for high rates of methane emissions to the atmosphere. The complexity and diversity of estuaries require detailed investigation of methane sources and sinks, as well as of their spatial and seasonal variations. The Elbe river estuary and the adjacent North Sea were chosen as the study site for this survey, which was conducted from October 2010 to June 2012. Using gas chromatography and radiotracer techniques, we measured methane concentrations and methane oxidation (MOX) rates along a 60 km long transect from Cuxhaven to Helgoland. Methane distribution was influenced by input from the methane-rich mouth of the Elbe and gradual dilution by methane-depleted sea water. Methane concentrations near the coast were on average 30 ± 13 nmol L−1, while in the open sea, they were 14 ± 6 nmol L−1. Interestingly, the highest methane concentrations were repeatedly detected near Cuxhaven, not in the Elbe River freshwater end-member as previously reported. Though, we did not find clear seasonality we observed temporal methane variations, which depended on temperature and presumably on water discharge from the Elbe River. The highest MOX rates generally coincided with the highest methane concentrations, and varied from 2.6 ± 2.7 near the coast to 0.417 ± 0.529 nmol L−1 d−1 in the open sea. Turnover times varied from 3 to 〉1000 days. MOX rates were strongly affected by methane concentration, temperature and salinity. We ruled out the supposition that MOX is not an important methane sink in most of the Elbe estuary and adjacent German Bight.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-20
    Description: Numerous articles have recently reported on gas seepage offshore Svalbard, because of gas emission that may be due to gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. Here we report on findings for a much broader extent of seepage in water depths at and shallower than the gas hydrate stability zone. More than a thousand gas seepage sites imaged as acoustic flares generate a hundreds of kilometer-long plume. Most flares were detected in the vicinity of the Hornsund Fracture Zone. We postulate that the gas ascends from depth along the fracture zone; its discharge is focused on bathymetric highs and is constrained by glaciomarine and Holocene sediments in the troughs. A fraction of this dissolved methane (~1.8%) was oxidized whereas a minor but measureable fraction (0.05%) was transferred into the atmosphere in August 2015. The large scale seepage reported here is not linked to anthropogenic warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-15
    Description: Large amounts of the greenhouse gas methane are released from the seabed but liberation of methane to the atmosphere is mitigated by aerobic methanotrophs in the water column. The size and activity of methanotrophic communities are thought to be mainly determined by nutrient and redox dynamics, but little is known about the effects of water mass transport. Here, we show that cold bottom waters at methane seeps west off Svalbard, which contained a large number of aerobic methanotrophs, were rapidly displaced by warmer waters with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current strongly reduced methanotrophic activity. Currents are common at many methane seeps and could thus be a globally important control on methane oxidation in the water column.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...