ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-04-09
    Description: The pelagic ocean harbors one of the largest ecosystems on Earth. It is responsible for approximately half of global primary production, sustains worldwide fisheries, and plays an important role in the global carbon cycle. Ocean warming caused by anthropogenic climate change is already starting to impact the marine biota, with possible consequences for ocean productivity and ecosystem services. Because temperature sensitivities of marine autotrophic and heterotrophic processes differ greatly, ocean warming is expected to cause major shifts in the flow of carbon and energy through the pelagic system. Attempts to integrate such biological responses into marine ecosystem and biogeochemical models suffer from a lack of empirical data. Here, we show, using an indoor-mesocosm approach, that rising temperature accelerates respiratory consumption of organic carbon relative to autotrophic production in a natural plankton community. Increasing temperature by 2–6 °C hence decreased the biological drawdown of dissolved inorganic carbon in the surface layer by up to 31%. Moreover, warming shifted the partitioning between particulate and dissolved organic carbon toward an enhanced accumulation of dissolved compounds. In line with these findings, the loss of organic carbon through sinking was significantly reduced at elevated temperatures. The observed changes in biogenic carbon flow have the potential to reduce the transfer of primary produced organic matter to higher trophic levels, weaken the ocean's biological carbon pump, and hence provide a positive feedback to rising atmospheric CO2.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 106 (31). pp. 12788-12793.
    Publication Date: 2016-11-14
    Description: Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature–size relationships (i.e., Bergmann's rule, James' rule and Temperature–Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-08
    Description: The pelagic ocean harbors one of the largest ecosystems on Earth. It is responsible for approximately half of global primary production, sustains worldwide fisheries, and plays an important role in the global carbon cycle. Ocean warming caused by anthropogenic climate change is already starting to impact the marine biota, with possible consequences for ocean productivity and ecosystem services. Because temperature sensitivities of marine autotrophic and heterotrophic processes differ greatly, ocean warming is expected to cause major shifts in the flow of carbon and energy through the pelagic system. Attempts to integrate such biological responses into marine ecosystem and biogeochemical models suffer from a lack of empirical data. Here, we show, using an indoor-mesocosm approach, that rising temperature accelerates respiratory consumption of organic carbon relative to autotrophic production in a natural plankton community. Increasing temperature by 2-6 degrees C hence decreased the biological drawdown of dissolved inorganic carbon in the surface layer by up to 31%. Moreover, warming shifted the partitioning between particulate and dissolved organic carbon toward an enhanced accumulation of dissolved compounds. In line with these findings, the loss of organic carbon through sinking was significantly reduced at elevated temperatures. The observed changes in biogenic carbon flow have the potential to reduce the transfer of primary produced organic matter to higher trophic levels, weaken the ocean's biological carbon pump, and hence provide a positive feedback to rising atmospheric CO2.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...