ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (22)
  • Springer  (10)
  • Mineralogical Society of Great Britain and Ireland  (5)
  • National Academy of Sciences  (5)
  • Mineralogical Society of America  (2)
  • Public Library of Science (PLoS)
  • Geosciences  (14)
  • Natural Sciences in General  (7)
  • Technology  (1)
Collection
  • Articles  (22)
Journal
  • 1
    ISSN: 1437-3262
    Keywords: Manganese nodules ; Thorium dating ; Uranium isotopes ; Peru basin ; TIMS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Thorium- and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution230Thexcess profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06–0.59 ppb (230Th), 0.43–1.40 ppm (232Th), 0.09–0.49 ppb (234U) and 1.66–8.24 ppm (238U). The uranium activity ratio in the uppermost samples (1–6 mm) and in two further sections in the nodule at 12.5±1.0 mm and 27.3–33.5 mm comes close to the present ocean water value of 1.144±0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the230Thexcess concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant230Thexcess concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11–15 and 28–33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 18 (1930), S. 751-752 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 5 (1977), S. 157-163 
    ISSN: 1573-9686
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The standard Lown-type capacitor discharge waveform was compared with a single half-cycle 60-Hz sinusoid for effectiveness of defibrillation. Both shock types were used in attempts to defibrillate a series of dogs over a range of intensities from that below the minimum required for defibrillation to values well above those which consistently were successful. An on-line computer was used to monitor energy, peak current, and peak voltage of each shock. The results were plotted as percent success vs each parameter and comparisons were made at the 80% level. The half-cycle sinusoid required 18% more energy but 20% less peak current and 15% less peak voltage for 80% probability of success at these intensity levels. These results indicate that the half-cycle 60-Hz sinusoid is a reasonable alternative as a defibrillating waveform for low-energy applications (open chest surgery, some pediatric cases, and small animal applications) where its advantages of waveform unaffected by load impedance, and simplicity of circuit, may be realized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0016-7835
    Keywords: Key words Manganese nodules ; Thorium dating ; Uranium isotopes ; Peru basin ; TIMS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Thorium- and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution 230Thexcess profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06–0.59 ppb (230Th), 0.43-1.40 ppm (232Th), 0.09–0.49 ppb (234U) and 1.66–8.24 ppm (238U). The uranium activity ratio in the uppermost samples (1–6 mm) and in two further sections in the nodule at 12.5±1.0 mm and 27.3–33.5 mm comes close to the present ocean water value of 1.144±0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the 230Thexcess concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant 230Thexcess concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11–15 and 28–33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-16
    Description: Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (〉1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-12
    Description: Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of −1 W⋅m−2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y−1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2016-08-03
    Description: Thoracic aortic aneurysms and dissections (TAAD) represent a substantial cause of morbidity and mortality worldwide. Many individuals presenting with an inherited form of TAAD do not have causal mutations in the set of genes known to underlie disease. Using whole-genome sequencing in two first cousins with TAAD, we identified a...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-01
    Description: Manganoquadratite, ideally AgMnAsS3, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as dark gray, anhedral to subhedral grains up 0.5 mm across, closely associated with alabandite, Mn-rich calcite, Mn-rich sphalerite, proustite, pyrite, pyrrhotite, tennantite, argentotennantite, stannite, and other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S. Manganoquadratite is opaque with a metallic luster and possesses a reddish-brown streak. It is brittle, the Vickers microhardness (VHN10) is 81 kg/mm2 (range 75–96) (corresponding Mohs hardness of 2–2½). The calculated density is 4.680 g/cm3 (on the basis of the empirical formula). In plane-polarized reflected light, manganoquadratite is moderately bireflectant and very weakly pleochroic from dark gray to a blue gray. Internal reflections are absent. Between crossed polars, the mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 29.5, 31.8 (471.1 nm), 28.1, 30.5 (548.3 nm), 27.3, 29.3 (586.6 nm), and 26.0, 28.2 (652.3 nm), respectively.Manganoquadratite is tetragonal, space group P4322, with unit-cell parameters: a = 5.4496(5), c = 32.949(1) Å, V = 978.5(1) Å3, c:a = 6.046, Z = 8. The structure, refined to R1 = 0.0863 for 907 reflections with Fo 〉 4σ(Fo), consists of a stacking along [001] of alabandite-like Mn2S2 layers connected to each to other by a couple of AgAsS2 sheets where As3+ forms typical AsS3 groups, whereas Ag+ cations are fivefold coordinated. The six strongest lines in the observed X-ray powder-diffraction pattern [d in Å (I/I0) (hkl)] are: 3.14 (60) (116), 2.739 (50) (0 0 12), 2.710 (100) (200), 1.927(70) (2 0 12 + 220), 1.645 (25) (3 0 16), and 1.573 (20) (22 12).Electron microprobe analyses gave the chemical formula (on the basis of six atoms) (Ag0.95Cu0.05)∑=1.00 (Mn0.96Pb0.04)∑=1.00(As0.87Sb0.14)∑=1.01S2.99, leading to the simplified formula AgMnAsS3.The name was chosen to indicate the close analogy of the formula and unit-cell dimensions with quadratite, Ag(Cd,Pb)(As,Sb)S3. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA 2011-008.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: 〈div data-abstract-type="normal"〉 〈p〉Agmantinite, ideally Ag〈span〉2〈/span〉MnSnS〈span〉4〈/span〉, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as orange–red crystals up to 100 μm across. Agmantinite is translucent with adamantine lustre and possesses a red streak. It is brittle. Neither fracture nor cleavage were observed. Based on the empirical formula the calculated density is 4.574 g/cm〈span〉3〈/span〉. On the basis of chemically similar compounds the Mohs hardness is estimated at between 2 to 2½. In plane-polarised light agmantinite is white with red internal reflections. It is weakly bireflectant with no observable pleochroism with red internal reflections. Between crossed polars, agmantinite is weakly anisotropic with reddish brown to greenish grey rotation tints. The reflectances (〈span〉R〈/span〉〈span〉min〈/span〉 and 〈span〉R〈/span〉〈span〉max〈/span〉) for the four standard wavelengths are: 19.7 and 22.0 (470 nm); 20.5 and 23.2 (546 nm); 21.7 and 2.49 (589 nm); and 20.6 and 23.6 (650 nm), respectively.〈/p〉 〈p〉Agmantinite is orthorhombic, space group 〈span〉P〈/span〉2〈span〉1〈/span〉〈span〉nm〈/span〉, with unit-cell parameters: 〈span〉a〈/span〉 = 6.632(2), 〈span〉b〈/span〉 = 6.922(2), 〈span〉c〈/span〉 = 8.156(2) Å, 〈span〉V〈/span〉 = 374.41(17) Å〈span〉3〈/span〉, 〈span〉a〈/span〉:〈span〉b〈/span〉:〈span〉c〈/span〉 0.958:1:1.178 and 〈span〉Z〈/span〉 = 2. The crystal structure was refined to 〈span〉R〈/span〉 = 0.0575 for 519 reflections with 〈span〉I 〉〈/span〉 2σ(〈span〉I〈/span〉). Agmantinite is the first known mineral of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190522072108342-0385:S0026461X18001391:S0026461X18001391_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉〈span〉M〈/span〉〈span〉II〈/span〉〈span〉M〈/span〉〈span〉IV〈/span〉S〈span〉4〈/span〉 type that is derived from wurtzite rather than sphalerite by ordered substitution of Zn, analogous to the substitution pattern for deriving stannite from sphalerite. The six strongest X-ray powder-diffraction lines derived from single-crystal X-ray diffraction data [〈span〉d〈/span〉 in Å (intensity)] are: 3.51 (s), 3.32 (w), 3.11 (vs), 2.42 (w), 2.04 (m) and 1.88 (m). The empirical formula (based on 8 apfu) is (Ag〈span〉1.94〈/span〉Cu〈span〉0.03〈/span〉)〈span〉Σ1.97〈/span〉(Mn〈span〉0.98〈/span〉Zn〈span〉0.05〈/span〉)〈span〉Σ1.03〈/span〉Sn〈span〉0.97〈/span〉S〈span〉4.03〈/span〉.The crystal structure-derived formula is Ag〈span〉2〈/span〉(Mn〈span〉0.69〈/span〉Zn〈span〉0.31〈/span〉)〈span〉Σ1.00〈/span〉SnS〈span〉4〈/span〉 and the simplified formula is Ag〈span〉2〈/span〉MnSnS〈span〉4〈/span〉.〈/p〉 〈p〉The name is for the composition and the new mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2014-083).〈/p〉 〈/div〉
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...