ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-20
    Description: Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-15
    Description: Important processes of living cells, including intracellular transport, cell crawling, contraction, division, and mechanochemical signal transduction, are controlled by cytoskeletal (CSK) dynamics. CSK dynamics can be measured by tracking the motion of CSK-bound particles. Particle motion has been reported to follow a superdiffusive behavior that is believed to arise from ATP-driven intracellular stress fluctuations generated by polymerization processes and motor proteins. The power spectrum of intracellular stress fluctuations has been suggested to decay with 1/2 (Lau et al, Phys Rev Lett 91:198101). Here we report direct measurements of cellular force fluctuations that are transmitted to the extracellular matrix, and compared them with the spontaneous motion of CSK-bound beads. Fibronectin coated fluorescent beads (Ø 1 m) were bound to the CSK of confluent human vascular endothelial cells. Forces transmitted to the extracellular matrix (ECM) were quantified by plating these cells onto a collagen coated elastic polyacrylamide hydrogel, and measuring the gel deformation from the displacement of embedded fluorescent beads (Ø 0.5 m). Bead motion of both CSK-bound and ECM-bound beads were measured with nanometer-resolution and expressed as mean square displacement (MSD). The MSD of both CSK-bound and ECM-bound beads displayed a superdiffusive behavior that was well described by a power law: MSD = a*t^b. Surprisingly, we found an identical power law exponent for both CSK-bound and ECM-bound beads of b = 1.6. This finding suggests that the spontaneous motion of CSK-bound beads is driven by stress fluctuations with a 1/ b+1 power spectrum. This result is consistent with the notion that CSK dynamics and CSK stress fluctuations are closely coupled.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...