ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-22
    Description: Mass loss of the Greenland ice sheet is accelerating, which is attributed to increased ice stream discharge and changes in surface mass balance including increased runoff. Ice stream discharge is caused by both ice deformation and basal sliding. For a better projection of future mass loss, it is important to understand deformation mechanisms of polycrystalline ice in ice sheet. Deformation properties of polycrystalline material are related to its microstructure (e.g. crystal grain orientation and size). As recrystallization and recovery are occurring together in ice sheet, microstructural analysis of ice is essential. Electron backscatter diffraction (EBSD) is a method for measuring crystal lattice orientation with high angular and spatial resolutions. Both c- and a-axes of ice can be measured. We analyzed Greenland NEEM ice core and the preliminary result shows that most subgrain boundaries (SGBs) observed by optical microscopy have lattice misorientations 〈 4°. This result is in accordance with analyses of Antarctic EDML ice core by X-ray diffractometry while it differs from threshold angle of SGB/GB estimated with a dislocation theory. The observation results from ice sheet ice could contribute to better estimations of strain rate by models based on microstructural processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...