ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 106 (1999), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Barley (Hordeum vulgare L.) exposed to low temperature increases its freezing tolerance. This increase has been associated with several metabolic changes caused by low temperature, including expression of dehydrins (DHN), a family of proteins induced by dehydration and cold acclimation. DHNs play an undetermined role in dehydration responses during freezing. We have studied the accumulation of an 80-kDa DHN-like protein (P-80) in barley under cold acclimation 6/4°C (day/night), postulating that it is localized in tissues where primary ice nucleation occurs. P-80 was absent in nonacclimated plants and was detectable after 48 h of cold acclimation, reaching a stable level after 6 days. P-80 decreased when plants were returned to 20–25°C. Drought, ABA and high temperature did not increase the levels of P-80, suggesting that its expression could be specifically regulated by cold. Immunolocalization by tissue printing and fresh cross sections of leaves showed the protein to be associated with vascular tissues and epidermis. The localization of P-80 is consistent with our hypothesis because vascular tissue and the epidermis are preferential ice nucleation zones during the onset of freezing. The differential accumulation of P-80 may have an adaptive value by participating in tolerance mechanisms during freeze-induced dehydration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 103 (1998), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The role of ABA in freezing resistance in nonacclimated and cold-acclimated barley (Hordeum vulgare L.) was studied. Eleven nonacclimated cultivars differed in their LT50, ranging from −10.8 to −4.8°C. Sugars, free proline, soluble proteins and ABA were analyzed in nonacclimated cultivars and during cold acclimation of one cultivar. There was an inverse correlation between LT50 and both ABA and sucrose contents. Exogenous ABA caused a decrease in the freezing point of leaf tissue in the cultivar with the lowest level of endogenous ABA, but not in the cultivar with the highest level, suggesting that ABA in the latter may be near the optimum endogenous level to induce freezing tolerance. Plants of cv. Aramir treated with ABA or allowed to acclimate to cold temperature increased their soluble sugar content to a similar level. The LT50 of leaves of cold-acclimated cv. Aramir decreased from −5.8 to −11.4°C, with biphasic kinetics, accumulating proline and soluble sugars with similar kinetics. The biphasic profile observed during cold acclimation could be a direct consequence of cryoprotectant accumulation kinetics. ABA and soluble protein accumulation showed a single step profile, associated mainly with the second phase of the LT50 decrease. Thus, a significant increase in endogenous ABA is part of the response of barley to low temperature and may be required as a signal for the second phase of cold acclimation. Endogenous ABA contents in the nonacclimated state may determine constitutive freezing tolerance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...