ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-17
    Description: Genes, Vol. 9, Pages 256: Characterization of Antimicrobial Resistance Determinants and Class 1 and Class 2 Integrons in Salmonella enterica spp., Multidrug-Resistant Isolates from Pigs Genes doi: 10.3390/genes9050256 Authors: Héctor Argüello Beatriz Guerra Irene Rodríguez Pedro Rubio Ana Carvajal Antimicrobial resistance (AMR) and Salmonella spp., are primary concerns in public health. The present study characterizes the AMR determinants of 62 multi-drug resistant (MDR) Salmonella enterica spp., isolates from swine, which were obtained between 2004–2006, a major source of human salmonellosis. The AMR determinants were investigated by PCR, checking the presence of class 1 and class 2 integrons and 29 resistance genes. Genes sul1, blaTEM1-like, aadA2, tet(A), and dfrA12 were more prevalent (p < 0.05) within the determinants that were checked for each of these antimicrobials. Co-existence of different genes conferring resistance to the same antimicrobial was common. No differences in AMR determinants prevalence were observed between Salmonella Typhimurium and other serovars from the study. Class 1 integrons were detected in 48 of 62 isolates, again with no differences being linked to any serovar. Nine different variable regions were observed, 1000 bp/aadA2-1200 bp/blaPSE-1 (13 isolates) and blaOXA-like/aadA1 (eight isolates) were the most common. Four isolates, including S. Typhimurium (2), Salmonella Bredeney (1), and Salmonella Kapemba (1) harboured a class 2 integron 2300 bp estX-sat2-aadA1. Results from the study highlight the importance of class 1 integrons and certain genes in MDR swine Salmonella isolates. The information is of relevance for monitoring in the forthcoming scope of reduction of antibiotic usage in swine production.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-20
    Description: Genes, Vol. 9, Pages 363: Genome-Wide Comparative Analysis of Aspergillus fumigatus Strains: The Reference Genome as a Matter of Concern Genes doi: 10.3390/genes9070363 Authors: Rocio Garcia-Rubio Sara Monzon Laura Alcazar-Fuoli Isabel Cuesta Emilia Mellado Aspergillus fumigatus is a ubiquitous saprophytic mold and a major pathogen in immunocompromised patients. The effectiveness of triazole compounds, the A. fumigatus first line treatment, is being threatened by a rapid and global emergence of azole resistance. Whole genome sequencing (WGS) has emerged as an invaluable tool for the analysis of genetic differences between A. fumigatus strains, their genetic background, and antifungal resistance development. Although WGS analyses can provide a valuable amount of novel information, there are some limitations that should be considered. These analyses, based on genome-wide comparative data and single nucleotide variant (SNV) calling, are dependent on the quality of sequencing, assembling, the variant calling criteria, as well as on the suitable selection of the reference genome, which must be genetically close to the genomes included in the analysis. In this study, 28 A. fumigatus genomes sequenced in-house and 73 available in public data bases have been analyzed. All genomes were distributed in four clusters and showed a variable number of SNVs depending on the genome used as reference (Af293 or A1163). Each reference genome belonged to a different cluster. The results highlighted the importance of choosing the most suitable A. fumigatus reference genome to avoid misleading conclusions.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-25
    Description: Genes, Vol. 9, Pages 60: Genomic Diversity in the Endosymbiotic Bacterium Rhizobium leguminosarum Genes doi: 10.3390/genes9020060 Authors: Carmen Sánchez-Cañizares Beatriz Jorrín David Durán Suvarna Nadendla Marta Albareda Laura Rubio-Sanz Mónica Lanza Manuel González-Guerrero Rosa Prieto Belén Brito Michelle Giglio Luis Rey Tomás Ruiz-Argüeso José Palacios Juan Imperial Rhizobium leguminosarum bv. viciae is a soil α-proteobacterium that establishes a diazotrophic symbiosis with different legumes of the Fabeae tribe. The number of genome sequences from rhizobial strains available in public databases is constantly increasing, although complete, fully annotated genome structures from rhizobial genomes are scarce. In this work, we report and analyse the complete genome of R. leguminosarum bv. viciae UPM791. Whole genome sequencing can provide new insights into the genetic features contributing to symbiotically relevant processes such as bacterial adaptation to the rhizosphere, mechanisms for efficient competition with other bacteria, and the ability to establish a complex signalling dialogue with legumes, to enter the root without triggering plant defenses, and, ultimately, to fix nitrogen within the host. Comparison of the complete genome sequences of two strains of R. leguminosarum bv. viciae, 3841 and UPM791, highlights the existence of different symbiotic plasmids and a common core chromosome. Specific genomic traits, such as plasmid content or a distinctive regulation, define differential physiological capabilities of these endosymbionts. Among them, strain UPM791 presents unique adaptations for recycling the hydrogen generated in the nitrogen fixation process.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...