ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2018-12-17
    Description: In order to improve vibration energy harvesting, this paper designs an arc-shaped piezoelectric bistable vibration energy harvester (ABEH). The bistable configuration is achieved by using magnetic coupling, and the nonlinear magnetic force is calculated. Based on Lagrangian equation, piezoelectric theory, Kirchhoff’s law, etc., a complete theoretical model of the presented ABEH is built. The influence of the nonlinear stiffness terms, the electromechanical coupling coefficient, the damping, the distance between magnets, and the load resistance on the dynamic response and the energy harvesting performance of the ABEH is numerically explored. More importantly, experiments are designed to verify the energy harvesting enhancement of the ABEH. Compared with the non-magnet energy harvester, the ABEH has much better energy harvesting performance.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-02
    Description: To reveal the nonlinear mechanism of the tri-stable piezoelectric vibration energy harvester based on composite shape beam (TPEH-C) and its influence on the system response, the nonlinear restoring force and the nonlinear magnetic force are discussed and analyzed in this paper. The nonlinear magnetic model is acquired by using equivalent magnetizing current theory, and the nonlinear resilience model is obtained by fitting experimental data. The corresponding distributed parameter model based on generalized Hamiltonian variation principle has been established. Frequency response functions for the TPEH-C are derived according to harmonic balance expansion, and the influence of different magnet distances and different excitation accelerations on the response amplitude and bandwidth of the TPEH-C are investigated. More importantly, the correctness of the theoretical analysis is verified by experiments. The results reveal that the spectrum of composite beam shows hard characteristic and the depth of potential well is changed, which provides a new way to ameliorate the potential well of the TPEH-C. A suitable magnet distance enables the TPEH-C to improve the response amplitude and the effective frequency range. The results in this paper have a theoretical guiding significance for the optimal design and engineering application of the TPEH-C.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...