ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Molecular Diversity Preservation International  (6)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2020-09-05
    Beschreibung: The Konos Hill and Pagoni Rachi porphyry-epithermal prospects in northeastern Greece are characterized by abundant pyrite that displays important textural and geochemical variations between the various ore stages. It is commonly fine-grained and anhedral in the porphyry-related mineralization (M- and D-type veins), while it forms idiomorphic, medium- to coarse-grained crystals in the late, epithermal style veins (E-type). Porphyry-style pyrite from both prospects is characterized by an enrichment in Co, Se, Cu, and minor Zn, and a depletion in other trace elements, like Bi, Mo, Ag, etc. Pyrite in epithermal-style mineralization is mostly characterized by the presence of As, Bi, Pb, Ni, and Se. Gold in pyrite from all mineralization stages occurs as a non-stoichiometric substituting element, and its abundance correlates with As content. Arsenic in pyrite from Konos Hill records an increase from the porphyry stage to the epithermal stage (along with gold); however, at Pagoni Rachi, the highest Au and As contents are recorded in D-type pyrite and in the epithermal stage. The composition of the studied pyrite marks changes in the physico-chemical conditions of the ore-forming fluids and generally follows the geochemical trends from other porphyry-epithermal systems elsewhere. However, a notable enrichment of Se in the porphyry-style pyrite here is a prominent feature compared to other deposits and can be considered as an exploration tool towards Au-enriched mineralized areas.
    Digitale ISSN: 2075-163X
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-01-15
    Beschreibung: Greece contains several gem corundum deposits set within diverse geological settings, mostly within the Rhodope (Xanthi and Drama areas) and Attico-Cycladic (Naxos and Ikaria islands) tectono-metamorphic units. In the Xanthi area, the sapphire (pink, blue to purple) deposits are stratiform, occurring within marble layers alternating with amphibolites. Deep red rubies in the Paranesti-Drama area are restricted to boudinaged lenses of Al-rich metapyroxenites alternating with amphibolites and gneisses. Both occurrences are oriented parallel to the ultra-high pressure/high pressure (UHP/HP) Nestos suture zone. On central Naxos Island, colored sapphires are associated with desilicated granite pegmatites intruding ultramafic lithologies (plumasites), occurring either within the pegmatites themselves or associated metasomatic reaction zones. In contrast, on southern Naxos and Ikaria Islands, blue sapphires occur in extensional fissures within Mesozoic metabauxites hosted in marbles. Mineral inclusions in corundums are in equilibrium and/or postdate corundum crystallization and comprise: spinel and pargasite (Paranesti), spinel, zircon (Xanthi), margarite, zircon, apatite, diaspore, phlogopite and chlorite (Naxos) and chloritoid, ilmenite, hematite, ulvospinel, rutile and zircon (Ikaria). The main chromophore elements within the Greek corundums show a wide range in concentration: the Fe contents vary from (average values) 1099 ppm in the blue sapphires of Xanthi, 424 ppm in the pink sapphires of Xanthi, 2654 ppm for Paranesti rubies, 4326 ppm for the Ikaria sapphires, 3706 for southern Naxos blue sapphires, 4777 for purple and 3301 for pink sapphire from Naxos plumasite, and finally 4677 to 1532 for blue to colorless sapphires from Naxos plumasites, respectively. The Ti concentrations (average values) are very low in rubies from Paranesti (41 ppm), with values of 2871 ppm and 509 in the blue and pink sapphires of Xanthi, respectively, of 1263 ppm for the Ikaria blue sapphires, and 520 ppm, 181 ppm in Naxos purple, pink sapphires, respectively. The blue to colorless sapphires from Naxos plumasites contain 1944 to 264 ppm Ti, respectively. The very high Ti contents of the Xanthi blue sapphires may reflect submicroscopic rutile inclusions. The Cr (average values) ranges from 4 to 691 ppm in the blue, purple and pink colored corundums from Naxos plumasite, is quite fixed (222 ppm) for Ikaria sapphires, ranges from 90 to 297 ppm in the blue and pink sapphires from Xanthi, reaches 9142 ppm in the corundums of Paranesti, with highest values of 15,347 ppm in deep red colored varieties. Each occurrence has both unique mineral assemblage and trace element chemistry (with variable Fe/Mg, Ga/Mg, Ga/Cr and Fe/Ti ratios). Additionally, oxygen isotope compositions confirm their geological typology, i.e., with, respectively δ18O of 4.9 ± 0.2‰ for sapphire in plumasite, 20.5‰ for sapphire in marble and 1‰ for ruby in mafics. The fluid inclusions study evidenced water free CO2 dominant fluids with traces of CH4 or N2, and low CO2 densities (0.46 and 0.67 g/cm3), which were probably trapped after the metamorphic peak. The Paranesti, Xanthi and central Naxos corundum deposits can be classified as metamorphic sensu stricto (s.s.) and metasomatic, respectively, those from southern Naxos and Ikaria display atypical magmatic signature indicating a hydrothermal origin. Greek corundums are characterized by wide color variation, homogeneity of the color hues, and transparency, and can be considered as potential gemstones.
    Digitale ISSN: 2075-163X
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-07-28
    Beschreibung: Epithermally altered volcanic rocks in Greece host amethyst-bearing veins in association with various silicates, carbonates, oxides and sulfides. Host rocks are Oligocene to Pleistocene calc-alkaline to shoshonitic lavas and pyroclastics of intermediate to acidic composition. The veins are integral parts of high to intermediate sulfidation epithermal mineralized centers in northern Greece (e.g., Kassiteres–Sapes, Kirki, Kornofolia/Soufli, Lesvos Island) and on Milos Island. Colloform–crustiform banding with alternations of amethyst, chalcedony and/or carbonates is a common characteristic of the studied amethyst-bearing veins. Hydrothermal alteration around the quartz veins includes sericitic, K-feldspar (adularia), propylitic and zeolitic types. Precipitation of amethyst took place from near-neutral to alkaline fluids, as indicated by the presence of various amounts of gangue adularia, calcite, zeolites, chlorite and smectite. Fluid inclusion data suggest that the studied amethyst was formed by hydrothermal fluids with relatively low temperatures (~200–250 °C) and low to moderate salinity (1–8 wt % NaCl equiv). A fluid cooling gradually from the external to the inner parts of the veins, possibly with subsequent boiling in an open system, is considered for the amethysts of Silver Hill in Sapes and Kassiteres. Amethysts from Kornofolia, Megala Therma, Kalogries and Chondro Vouno were formed by mixing of moderately saline hydrothermal fluids with low-salinity fluids at relatively lower temperatures indicating the presence of dilution processes and probably boiling in an open system. Stable isotope data point to mixing between magmatic and marine (and/or meteoric) waters and are consistent with the oxidizing conditions required for amethyst formation.
    Digitale ISSN: 2075-163X
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-29
    Beschreibung: In the Hellenides Orogen, minerals of various gem quality occur in various rock types from mainly four tectono-metamorphic units, the Rhodope, Pelagonian, and the Attico-Cycladic massifs, and the Phyllites-Quartzites unit of Crete Island. In crystalline rocks, gemstones are related to both regional metamorphic-metasomatic processes (e.g., gem corundums, Mn-andalusite, thulite/clinothulite, spessartine, titanite, jadeite), and to the formation of late alpine-type fissures, such as, for example, quartz, albite, adularia and titanite. The Tertiary (and Mesozoic) magmatic-hydrothermal environments provide gem-quality sapphire, beryl, garnet, vesuvianite, epidote, fluorite, and SiO2 varieties. The supergene oxidation zone of the Lavrion deposit hosts gem-quality smithsonite and azurite. Coloration in the studied material is either due to various chromophore trace elements present in the crystal structure, or due to inclusions of other mineral phases. Future modern exploration methods combined with gemological investigations (such as treatment and faceting of selected stones), are necessary in order to obtain a better knowledge of the gemstone potential of Greece for its possible exploitation.
    Digitale ISSN: 2075-163X
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2018-11-16
    Beschreibung: Vein-type Pb-Ni-Bi-Au-Ag mineralization at the Clemence deposit in the Kamariza and “km3” in the Lavrion area, was synchronous with the intrusion of a Miocene granodiorite body and related felsic and mafic dikes and sills within marbles and schists in the footwall of (and within) the Western Cycladic detachment system. In the Serpieri deposit (Kamariza area), a porphyry-style pyrrhotite-arsenopyrite mineralized microgranitic dike is genetically related to a garnet-wollastonite bearing skarn characterized by a similar base metal and Ni (up to 219 ppm) enrichment. The Ni–Bi–Au association in the Clemence deposit consists of initial deposition of pyrite and arsenopyrite followed by an intergrowth of native gold-bismuthinite and oscillatory zoned gersdorffite. The zoning is related to variable As, Ni, and Fe contents, indicating fluctuations of arsenic and sulfur fugacity in the hydrothermal fluid. A late evolution towards higher sulfur fugacity in the mineralization is evident by the deposition of chalcopyrite, tennantite, enargite, and galena rimming gersdorffite. At the “km3” locality, Ni sulfides and sulfarsenides, vaesite, millerite, ullmannite, and polydymite, are enclosed in gersdorffite and/or galena. The gersdorffite is homogenous and contains less Fe (up to 2 wt.%) than that from the Clemence deposit (up to 9 wt.%). Bulk ore analyses of the Clemence ore reveal Au and Ag grades both exceeding 100 g/t, Pb and Zn 〉 1 wt.%, Ni up to 9700 ppm, Co up to 118 ppm, Sn 〉 100 ppm, and Bi 〉 2000 ppm. The “km3” mineralization is enriched in Mo (up to 36 ppm), Ni (〉1 wt.%), and Co (up to 1290 ppm). Our data further support a magmatic contribution to the ore-forming fluids, although remobilization and leaching of metals from previous mineralization and/or host rocks, through the late involvement of non-magmatic fluid in the ore system, cannot be excluded.
    Digitale ISSN: 2075-163X
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-02-18
    Beschreibung: The Maronia Cu-Mo ± Re ± Au deposit is spatially related to a microgranite porphyry that intruded an Oligocene monzonite along the Mesozoic Circum-Rhodope belt in Thrace, NE Greece. The magmatic rocks and associated metallic mineralization show plastic and cataclastic features at the south-eastern margin of the deposit that implies emplacement at the ductile-brittle transition, adjacent to a shear zone at the footwall of the Maronia detachment fault. The conversion from ductile to brittle deformation caused a rapid upward magmatic fluid flow and increased the volume of water that interacted with the host rocks through high permeable zones, which produced extensive zones of potassic and sodic-calcic alteration. Potassic alteration is characterized by secondary biotite + K-feldspar (orthoclase) + magnetite + rutile + quartz ± apatite and commonly contains sulfides (pyrite, chalcopyrite, pyrrhotite). Sodic-calcic alteration consists of actinolite + sodic-calcic plagioclase (albite/oligoclase/andesine) + titanite + magnetite + chlorite + quartz ± calcite ± epidote-allanite. The high-oxidation state of the magmas and the hydrothermal fluid circulation were responsible for the metal and sulfur enrichments of the aqueous fluid phase, an increase in O2 gas content, the breakdown of the magmatic silicates and the production of the extensive potassic and sodic-calcic alterations. Brittle deformation also promoted the rapid upward fluid flow and caused interactions with the surrounding host rocks along the high temperature M-, EB-, A- and B-type veins.
    Digitale ISSN: 2075-163X
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...