ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2019-02-06
    Description: Graphene, as a typical two-dimensional nanometer material, has shown its uniqueapplication potential in electrical characteristics, thermal properties, and thermoelectric propertiesby virtue of its novel electronic structure. The field of traditional material modification mainlychanges or enhances certain properties of materials by mixing a variety of materials (to form aheterostructure) and doping. For graphene as well, this paper specifically discusses the use oftraditional modification methods to improve graphene’s electrical and thermoelectrical properties.More deeply, since graphene is an atomic-level thin film material, its shape and edge conformation(zigzag boundary and armchair boundary) have a great impact on performance. Therefore, thispaper reviews the graphene modification field in recent years. Through the change in the shape ofgraphene, the change in the boundary structure configuration, the doping of other atoms, and theformation of a heterostructure, the electrical, thermal, and thermoelectric properties of graphenechange, resulting in broader applications in more fields. Through studies of graphene’s electrical,thermal, and thermoelectric properties in recent years, progress has been made not only inexperimental testing, but also in theoretical calculation. These aspects of graphene are reviewed inthis paper.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-16
    Description: Unlike color dyes, structural colors only slightly fade during long-term usage. Here, structural colors were controllably achieved by constructing CoFeB photonic crystal layers on the surface of a nanoporous aluminum oxide (AAO) substrate by magnetron sputtering deposition. The resulting material showed a wide visible spectral response and achieved structural color control with a high resolution, high color purity, and saturation. The angle-dependent color changes of CoFeB@AAO films were further investigated by changing the incident light angle. The simulation results of the model are consistent with the experiments, which is significant in practical applications. This strategy may have great potential applications for solid structure color coatings, anti-counterfeiting and security, information storage, and electromagnetic sensors.
    Electronic ISSN: 2079-6412
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...