ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-26
    Description: The objective of this research was to analyze the temporal patterns of monthly and annual precipitation at 36 weather stations of Aguascalientes, Mexico. The precipitation trend was determined by the Mann–Kendall method and the rate of change with the Theil–Sen estimator. In total, 468 time series were analyzed, 432 out of them were monthly, and 36 were annual. Out of the total monthly precipitation time series, 42 series showed a statistically significant trend (p ≤ 0.05), from which 8/34 showed a statistically significant negative/positive trend. The statistically significant negative trends of monthly precipitation occurred in January, April, October, and December. These trends denoted more significant irrigation water use, higher water extractions from the aquifers in autumn–winter, more significant drought occurrence, low forest productivity, higher wildfire risk, and greater frost risk. The statistically significant positive trends occurred in May, June, July, August, and September; to a certain extent, these would contribute to the hydrology, agriculture, and ecosystem but also could provoke problems due to water excess. In some months, the annual precipitation variability and El Niño-Southern Oscillation (ENSO) were statistically correlated, so it could be established that in Aguascalientes, this phenomenon is one of the causes of the yearly precipitation variation. Out of the total annual precipitation time series, only nine series were statistically significant positive; eight out of them originated by the augments of monthly precipitation. Thirteen weather stations showed statistically significant trends in the total precipitation of the growing season (May, June, July, August, and September); these stations are located in regions of irrigated agriculture. The precipitation decrease in dry months can be mitigated using shorter cycle varieties with lower water consumption, irrigation methods with high efficiency, and repairing irrigation infrastructure. The precipitation increase in humid months can be used to store water and use it during the dry season, and its adverse effects can be palliated with the use of varieties resistant to root diseases and lodging. The results of this work will be beneficial in the management of agriculture, hydrology, and water resources of Aguascalientes and in neighboring arid regions affected by climate change.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-14
    Description: In the present study, six meta-heuristic schemes are hybridized with artificial neural network (ANN), adaptive neuro-fuzzy interface system (ANFIS), and support vector machine (SVM), to predict monthly groundwater level (GWL), evaluate uncertainty analysis of predictions and spatial variation analysis. The six schemes, including grasshopper optimization algorithm (GOA), cat swarm optimization (CSO), weed algorithm (WA), genetic algorithm (GA), krill algorithm (KA), and particle swarm optimization (PSO), were used to hybridize for improving the performance of ANN, SVM, and ANFIS models. Groundwater level (GWL) data of Ardebil plain (Iran) for a period of 144 months were selected to evaluate the hybrid models. The pre-processing technique of principal component analysis (PCA) was applied to reduce input combinations from monthly time series up to 12-month prediction intervals. The results showed that the ANFIS-GOA was superior to the other hybrid models for predicting GWL in the first piezometer (RMSE:1.21, MAE:0.878, NSE:0.93, PBIAS:0.15, R2:0.93), second piezometer (RMSE:1.22, MAE:0.881, NSE:0.92, PBIAS:0.17, R2:0.94), and third piezometer (RMSE:1.23, MAE:0.911, NSE:0.91, PBIAS:0.19, R2:0.94) in the testing stage. The performance of hybrid models with optimization algorithms was far better than that of classical ANN, ANFIS, and SVM models without hybridization. The percent of improvements in the ANFIS-GOA versus standalone ANFIS in piezometer 10 were 14.4%, 3%, 17.8%, and 181% for RMSE, MAE, NSE, and PBIAS in training stage and 40.7%, 55%, 25%, and 132% in testing stage, respectively. The improvements for piezometer 6 in train step were 15%, 4%, 13%, and 208% and in test step were 33%, 44.6%, 16.3%, and 173%, respectively, that clearly confirm the superiority of developed hybridization schemes in GWL modelling. Uncertainty analysis showed that ANFIS-GOA and SVM had, respectively, the best and worst performances among other models. In general, GOA enhanced the accuracy of the ANFIS, ANN, and SVM models.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-17
    Description: Accurate estimation of dew point temperature (Tdew) has a crucial role in sustainable water resource management. This study investigates kernel extreme learning machine (KELM), boosted regression tree (BRT), radial basis function neural network (RBFNN), multilayer perceptron neural network (MLPNN), and multivariate adaptive regression spline (MARS) models for daily dew point temperature estimation at Durham and UC Riverside stations in the United States. Daily time scale measured hydrometeorological data, including wind speed (WS), maximum air temperature (TMAX), minimum air temperature (TMIN), maximum relative humidity (RHMAX), minimum relative humidity (RHMIN), vapor pressure (VP), soil temperature (ST), solar radiation (SR), and dew point temperature (Tdew) were utilized to investigate the applied predictive models. Results of the KELM model were compared with other models using eight different input combinations with respect to root mean square error (RMSE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE) statistical indices. Results showed that the KELM models, using three input parameters, VP, TMAX, and RHMIN, with RMSE = 0.419 °C, NSE = 0.995, and R2 = 0.995 at Durham station, and seven input parameters, VP, ST, RHMAX, TMIN, RHMIN, TMAX, and WS, with RMSE = 0.485 °C, NSE = 0.994, and R2 = 0.994 at UC Riverside station, exhibited better performance in the modeling of daily Tdew. Finally, it was concluded from a comparison of the results that out of the five models applied, the KELM model was found to be the most robust by improving the performance of BRT, RBFNN, MLPNN, and MARS models in the testing phase at both stations.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-21
    Description: This study evaluates standalone and hybrid soft computing models for predicting dissolved oxygen (DO) concentration by utilizing different water quality parameters. In the first stage, two standalone soft computing models, including multilayer perceptron (MLP) neural network and cascade correlation neural network (CCNN), were proposed for estimating the DO concentration in the St. Johns River, Florida, USA. The DO concentration and water quality parameters (e.g., chloride (Cl), nitrogen oxides (NOx), total dissolved solid (TDS), potential of hydrogen (pH), and water temperature (WT)) were used for developing the standalone models by defining six combinations of input parameters. Results were evaluated using five performance criteria metrics. Overall results revealed that the CCNN model with input combination III (CCNN-III) provided the most accurate predictions of DO concentration values (root mean square error (RMSE) = 1.261 mg/L, Nash-Sutcliffe coefficient (NSE) = 0.736, Willmott’s index of agreement (WI) = 0.919, R2 = 0.801, and mean absolute error (MAE) = 0.989 mg/L) for the standalone model category. In the second stage, two decomposition approaches, including discrete wavelet transform (DWT) and variational mode decomposition (VMD), were employed to improve the accuracy of DO concentration using the MLP and CCNN models with input combination III (e.g., DWT-MLP-III, DWT-CCNN-III, VMD-MLP-III, and VMD-CCNN-III). From the results, the DWT-MLP-III and VMD-MLP-III models provided better accuracy than the standalone models (e.g., MLP-III and CCNN-III). Comparison of the best hybrid soft computing models showed that the VMD-MLP-III model with 4 intrinsic mode functions (IMFs) and 10 quadratic penalty factor (VMD-MLP-III (K = 4 and α = 10)) model yielded slightly better performance than the DWT-MLP-III with Daubechies-6 (D6) and Symmlet-6 (S6) (DWT-MLP-III (D6 and S6)) models. Unfortunately, the DWT-CCNN-III and VMD-CCNN-III models did not improve the performance of the CCNN-III model. It was found that the CCNN-III model cannot be used to apply the hybrid soft computing modeling for prediction of the DO concentration. Graphical comparisons (e.g., Taylor diagram and violin plot) were also utilized to examine the similarity between the observed and predicted DO concentration values. The DWT-MLP-III and VMD-MLP-III models can be an alternative tool for accurate prediction of the DO concentration values.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-24
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-18
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-09-15
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-10
    Description: Understanding the trends of reference evapotranspiration (ETo) and its influential meteorological variables due to climate change is required for studying the hydrological cycle, vegetation restoration, and regional agricultural production. Although several studies have evaluated these trends, they suffer from a number of drawbacks: (1) they used data series of less than 50 years; (2) they evaluated the individual impact of a few climatic variables on ETo, and thus could not represent the interactive effects of all forces driving trends of ETo; (3) they mostly studied trends of ETo and meteorological variables in similar climate regions; (4) they often did not eliminate the impact of serial correlations on the trends of ETo and meteorological variables; and finally (5) they did not study the extremum values of meteorological variables and ETo. This study overcame the abovementioned shortcomings by (1) analyzing the 50-year (1961–2010) annual trends of ETo and 12 meteorological variables from 18 study sites in contrasting climate types in Iran, (2) removing the effect of serial correlations on the trends analysis via the trend-free pre-whitening approach, (3) determining the most important meteorological variables that control the variations of ETo, and (4) evaluating the coincidence of annual extremum values of meteorological variables and ETo. The results showed that ETo and several meteorological variables (namely wind speed, vapor pressure deficit, cloudy days, minimum relative humidity, and mean, maximum and minimum air temperature) had significant trends at the confidence level of 95% in more than 50% of the study sites. These significant trends were indicative of climate change in many regions of Iran. It was also found that the wind speed (WS) had the most significant influence on the trend of ETo in most of the study sites, especially in the years with extremum values of ETo. In 83.3% of the study sites (i.e., all arid, Mediterranean and humid regions and 66.7% of semiarid regions), both ETo and WS reached their extremum values in the same year. The significant changes in ETo due to WS and other meteorological variables have made it necessary to optimize cropping patterns in Iran.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-07-30
    Description: The choice of a probability distribution function and confidence interval of estimated design values have long been of interest in flood frequency analysis. Although the four-parameter exponential gamma (FPEG) distribution has been developed for application in hydrology, its maximum likelihood estimation (MLE)-based parameter estimation method and asymptotic variance of its quantiles have not been well documented. In this study, the MLE method was used to estimate the parameters and confidence intervals of quantiles of the FPEG distribution. This method entails parameter estimation and asymptotic variances of quantile estimators. The parameter estimation consisted of a set of four equations which, after algebraic simplification, were solved using a three dimensional Levenberg-Marquardt algorithm. Based on sample information matrix and Fisher’s expected information matrix, derivatives of the design quantile with respect to the parameters were derived. The method of estimation was applied to annual precipitation data from the Weihe watershed, China and confidence intervals for quantiles were determined. Results showed that the FPEG was a good candidate to model annual precipitation data and can provide guidance for estimating design values.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-06
    Description: Booming urbanization triggers a significant modification of surface landscape configuration and hence complex urban climates. Considerable concerns exist regarding impacts of impervious surface area (ISA) and/or urban green space (UGS) on land surface temperature (LST). However, a knowledge gap still exists concerning the influence of urban landscape components and related spatial configuration on LST. To date, case studies have usually focused on individual cities, while few reports have addressed the impacts of urban surface components and relevant spatial configurations on LST within cities of different sizes, at different latitudes, and with different climatic backgrounds. Considering case studies from different latitudes and various climatic backgrounds can assist in obtaining comprehensive viewpoints about impacts of urban surface features on LST in both space and time. In this paper we analyzed data from three urban agglomerations, Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD), over the period 2000–2015. These three regions are densely populated with the most developed socio-economy across China, and are also dominated by booming urbanization. Based on Landsat remotely sensed data, we included the spatial pattern of surface components and related configuration into our analysis, quantifying impacts of spatial configuration of surface components on LST in both space and time. We found generally rising LST over all cities, which can be attributed to continuous urban expansion-induced decreased UGS. Generally, LST over ISA was 0.96–7.96 °C higher than that over UGS. We investigated the impacts of spatial pattern of land surface components on LST and found that the joint effect of the composition and spatial configuration of land surface components had the most significant impact on LST. Specifically, ISA and UGS had higher impact on LST than the impact of geometry of the ISA and UGS on LST. In the future, continuous expansion of ISA and continuous shrinking of UGS will drive the rising tendency of LST. Moreover, a larger rising tendency of LST will be observed in larger sized cities than smaller sized cities.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...