ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Molecular Diversity Preservation International  (3)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2020-09-13
    Beschreibung: Polymer foams are an important class of engineering material that are finding diverse applications, including as structural parts in automotive industry, insulation in construction, core materials for sandwich composites, and cushioning in mattresses. The vast majority of these manufactured foams are homogeneous with respect to porosity and structural properties. In contrast, while cellular materials are also ubiquitous in nature, nature mostly fabricates heterogeneous foams, e.g., cellulosic plant stems like bamboo, or a human femur bone. Foams with such engineered porosity distribution (graded density structure) have useful property gradients and are referred to as functionally graded foams. Functionally graded polymer foams are one of the key emerging innovations in polymer foam technology. They allow enhancement in properties such as energy absorption, more efficient use of material, and better design for specific applications, such as helmets and tissue restorative scaffolds. Here, following an overview of key processing parameters for polymer foams, we explore recent developments in processing functionally graded polymer foams and their emerging structures and properties. Processes can be as simple as utilizing different surface materials from which the foam forms, to as complex as using microfluidics. We also highlight principal challenges that need addressing in future research, the key one being development of viable generic processes that allow (complete) control and tailoring of porosity distribution on an application-by-application basis.
    Digitale ISSN: 1996-1944
    Thema: Maschinenbau
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-10-28
    Beschreibung: Liquid composite moulding (LCM) of plant fibre composites has gained much attention for the development of structural biobased composites. To produce quality composites, better understanding of the resin impregnation process and flow behaviour in plant fibre reinforcements is vital. By reviewing the literature, we aim to identify key plant fibre reinforcement-specific factors that influence, if not govern, the mould filling stage during LCM of plant fibre composites. In particular, the differences in structure (physical and biochemical) for plant and synthetic fibres, their semi-products (i.e., yarns and rovings), and their mats and textiles are shown to have a perceptible effect on their compaction, in-plane permeability, and processing via LCM. In addition to examining the effects of dual-scale flow, resin absorption, (subsequent) fibre swelling, capillarity, and time-dependent saturated and unsaturated permeability that are specific to plant fibre reinforcements, we also review the various models utilised to predict and simulate resin impregnation during LCM of plant fibre composites.
    Digitale ISSN: 1996-1944
    Thema: Maschinenbau
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-12-01
    Beschreibung: Three thermoset resin systems—bio-epoxy, epoxy, and polyester-with 30 v% flax fiber reinforcement have been studied to identify the optimal fiber–resin combination in a typical composite structure. Tensile, interface and interlaminar shear strength together with flexural and impact damage tolerance were compared in this study. The results revealed that mechanical and interfacial properties were not significantly affected by the different resin systems. Microscopy studies reveal that epoxy laminates predominantly fail by fibre linear breakage, polyester laminates by fiber pull-out, and bio-epoxy laminates by a combination of the two. The higher failure strains and pull-out mechanism may explain the better impact damage tolerance of polyester composites. Flow experiments were also conducted, revealing faster impregnation and lower void content with polyester resin, followed by bio-epoxy, due to their lower viscosities. Overall, bio-epoxy resin demonstrates comparable performance to epoxy and polyester resins for use in (semi-)structural bio-composites.
    Digitale ISSN: 1996-1944
    Thema: Maschinenbau
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...