ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (377)
  • American Association of Petroleum Geologists (AAPG)
  • 1
    Publication Date: 2020-07-09
    Description: Gridded passive microwave brightness temperatures (TB) from special sensor microwave imager and sounder (SSMIS) instruments on three different satellite platforms are compared in different years to investigate the consistency between the sensors over time. The orbits of the three platforms have drifted over their years of operation, resulting in changing relative observing times that could cause biases in TB estimates and near-real-time sea ice concentrations derived from the NASA Team algorithm that are produced at the National Snow and Ice Data Center. Comparisons of TB histograms and concentrations show that there are small mean differences between sensors, but variability within an individual sensor is much greater. There are some indications of small changes due to orbital drift, but these are not consistent across different frequencies. Further, the overall effect of the drift, while not definitive, is small compared to the intra- and interannual variability in individual sensors. These results suggest that, for near-real-time use, the differences in the sensors are not critical. However, for long-term time series, even the small biases should be corrected for. The strong day-to-day, seasonal, and interannual variability in TB distributions indicate that time-varying algorithm coefficients in the NASA team algorithm would lead to improved, more consistent sea ice concentration estimates.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-20
    Description: The Cretaceous rocks of Florida have been recognized as potentially suitable reservoirs for geologic carbon dioxide (CO 2 ) sequestration. Specifically, the upper member of the Upper Cretaceous Lawson Formation, together with the lower part of the Paleocene Cedar Keys Formation, is presented here as a potential composite CO 2 storage reservoir that is mainly composed of porous dolostone sealed by thick anhydrites of the overlying middle Cedar Keys Formation. Many of the porous intervals within the Cedar Keys-Lawson storage reservoir display lateral continuity and have an average porosity range of 20%–30%. The estimated CO 2 storage capacity for the reservoir is approximately 97 billion t of CO 2 , which means the Lawson and Cedar Keys Formations composite reservoir could potentially support CO 2 sequestration for hundreds of large-scale power plants in the southeastern United States for their entire 40-yr lifespan. Because most of the previous research on the Lawson Formation is concentrated in north-central and northeastern Florida and southern Georgia, this study further characterizes the formation and its CO 2 sequestration potential in south-central and southern Florida.
    Print ISSN: 1075-9565
    Electronic ISSN: 1526-0984
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-25
    Description: Until recently, air quality impacts from wildfires were predominantly determined based on data from permanent stationary regulatory air pollution monitors. However, low-cost particulate matter (PM) sensors are now widely used by the public as a source of air quality information during wildfires, although their performance during smoke impacted conditions has not been thoroughly evaluated. We collocated three types of low-cost fine PM (PM2.5) sensors with reference instruments near multiple fires in the western and eastern United States (maximum hourly PM2.5 = 295 µg/m3). Sensors were moderately to strongly correlated with reference instruments (hourly averaged r2 = 0.52–0.95), but overpredicted PM2.5 concentrations (normalized root mean square errors, NRMSE = 80–167%). We developed a correction equation for wildfire smoke that reduced the NRMSE to less than 27%. Correction equations were specific to each sensor package, demonstrating the impact of the physical configuration and the algorithm used to translate the size and count information into PM2.5 concentrations. These results suggest the low-cost sensors can fill in the large spatial gaps in monitoring networks near wildfires with mean absolute errors of less than 10 µg/m3 in the hourly PM2.5 concentrations when using a sensor-specific smoke correction equation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-01
    Description: Fluviodeltaic stratigraphic architecture and its impact on fluid flow have been characterized using a high-resolution, three-dimensional, reservoir-scale model of an outcrop analog from the Upper Cretaceous Ferron Sandstone Member of central Utah. The model contains two parasequence sets (delta complexes), each with five or six parasequences, separated by an interval of coastal plain strata. Each parasequence contains one or two laterally offset teardrop-shaped delta lobes that are 6 to 12 km (4-7 mi) long, 3 to 9 km (2-6 mi) wide, 5 to 29 m (16-95 ft) thick, and have aspect ratios (width/length) of 0.4 to 0.8. Delta lobes have a wide range of azimuthal orientations (120{degrees}) around an overall east-northeastward progradation direction. In plan view, delta lobes in successive parasequences exhibit large (as much as 91{degrees}) clockwise and counterclockwise rotations in progradation direction, which are attributed to autogenic lobe switching. In cross-sectional view, parasequence stacking is strongly progradational, but a small component of aggradation or downstepping between parasequences reflects relative sea level fluctuations. We use flow simulations to characterize the impact of this heterogeneity on production in terms of the sweep efficiency, which is controlled by (1) the continuity, orientation, and permeability of channel-fill sand bodies; (2) the vertical permeability of distal delta-front heteroliths; (3) the direction of sweep relative to the orientation of channel-fill and delta-lobe sand bodies; and (4) well spacing. Distributary channel-fill sand bodies terminate at the apex of genetically related delta lobes and provide limited sand body connectivity. In contrast, fluvial channel-fill sand bodies cut into, and connect, multiple delta-lobe sand bodies. Low, but non-zero, vertical permeability within distal delta-front heteroliths also provides connectivity between successive delta-lobe sand bodies.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-03
    Description: The Ardath Shale and Scripps Formation exposed along Black’s Beach north of La Jolla, California, record a deep-water channelized slope system of an Eocene forearc basin. The outcrop exposure, which is approximately 100 m (330 ft) high by 1.7 km (~1 mi) long, offers insight into reservoir distribution and connectivity within coarse-grained, confined, deep-water channel systems. To use this outcrop as a quantitative subsurface analog, a detailed two-dimensional lithologic model was constructed from measured sections and interpreted photopanels. Elastic rock properties, including compressional-wave velocity, shear-wave velocity, and density typical of shallow offshore west African reservoirs were used to construct an impedance model. This model was convolved with 15-, 25-, and 50-Hz quadrature-phase Ricker wavelets to generate near- and far-angle stack one-dimensional and two-dimensional synthetic seismic reflection models. Because deep-water lithofacies have distinct amplitude-variation-with-offset behaviors and the interpretation of surfaces is intimately coupled with predicting lithofacies, simple bed interface models of conglomerate, sandstone, interbedded sandstone and mudstone, and muddy sandy debrite were used to build a template for successful interpretation. Interpretation of these forward seismic models demonstrates (1) the limits of and uncertainty associated with the interpretation of seismic data at different frequencies commonly encountered in the exploration, development, and production of deep-water reservoirs; and (2) how the combination of near- and far-angle seismic data can be used to interpret channel-fill lithofacies and improve seismic interpretation. Large-scale channel complex set surfaces with significant impedance contrast (e.g., conglomerate overlying interbedded sandstone and mudstone) are readily interpretable at all frequencies with an increasing vertical error of 5 to 30 m (16 to 98 ft) from 50 to 15 Hz, respectively. Channel and channel complex surfaces can only be accurately mapped on the 50-Hz data, albeit with significant uncertainty. Near- to far-angle stack changes enable the identification of upward-fining, amalgamated, and fine-grained channel-fill lithofacies. Far-angle seismic reflections can provide a more detailed image of boundaries defining channel architecture and reservoir facies distribution.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-03
    Description: Multiple techniques are available to construct three-dimensional reservoir models. This study uses comparative analysis to test the impact of applying four commonly used stochastic modeling techniques to capture geologic heterogeneity and fluid-flow behavior in fluvial-dominated deltaic reservoirs of complex facies architecture: (1) sequential indicator simulation; (2) object-based modeling; (3) multiple-point statistics (MPS); and (4) spectral component geologic modeling. A reference for comparison is provided by a high-resolution model of an outcrop analog that captures facies architecture at the scale of parasequences, delta lobes, and facies-association belts. A sparse, pseudosubsurface data set extracted from the reference model is used to condition models constructed using each stochastic reservoir modeling technique. Models constructed using all four algorithms fail to match the facies-association proportions of the reference model because they are conditioned to well data that sample a small, unrepresentative volume of the reservoir. Simulated sweep efficiency is determined by the degree to which the modeling algorithms reproduce two aspects of facies architecture that control sand-body connectivity: (1) the abundance, continuity, and orientation of channelized fluvial sand bodies; and (2) the lateral continuity of barriers to vertical flow associated with flooding surfaces. The MPS algorithm performs best in this regard. However, the static and dynamic performance of the models (as measured against facies-association proportions, facies architecture, and recovery factor of the reference model) is more dependent on the quality and quantity of conditioning data and on the interpreted geologic scenario(s) implicit in the models than on the choice of modeling technique.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-19
    Description: Hydrocarbons have recently been discovered in Upper Triassic to Middle Jurassic siliciclastic reservoirs in the Rub' Al-Khali basin in Saudi Arabia. The reservoirs fill accommodation space created by Triassic and early Jurassic crustal-scale basins on the order of 100 km (62 mi) in wavelength and hundreds of meters in depth. These basins are separated by highs that are interpreted as crustal-scale epeirogenic folds. Lithologies include well-sorted quartz arenites deposited in shallow-marine, shoreface, and fluviodeltaic settings. These sequences can be correlated across the basin to extensive escarpment outcrops south of Riyadh and beyond Saudi Arabia into well-documented equivalents elsewhere in the Middle East and East Africa. The gross architecture of the interval is imaged on reflection seismic, showing clinoformal geometries and onlap onto the Triassic structured surface. Geochemistry of tested fluids indicates a type III kerogen source. The simplest interpretation is that the system is self-sourcing hydrocarbons from interbedded coaly material that is observed in the wells and at outcrop. Reservoir pressures are anomalously low relative to the overlying carbonate reservoir systems. These low pressures are interpreted to indicate lateral communication from the Rub' Al-Khali basin westward to outcrop, in contrast with the overlying carbonate fairways that are known to contain facies boundaries that trend across the regional dip. Onlapping geometries in the siliciclastic fairway combine with Cretaceous and Cenozoic compressional structures to create combined structural-stratigraphic traps.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-27
    Description: This paper uses a two-fold multi-criteria decision-making (MCDM) approach applied for the first time to the field of microbial management of drinking water distribution systems (DWDS). Specifically, the decision-making trial and evaluation laboratory (DEMATEL) was applied removing the need for reliance on expert judgement, and analysed interdependencies among water quality parameters and microbiological characteristics of DWDS composed of different pipe materials. In addition, the fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) ranked the most common bacteria identified during trials in a DWDS according to their relative abundance while managing vagueness affecting the measurements. The novel integrated approach presented and proven here for an initial real world data set provides new insights in the interdependence of environmental conditions and microbial populations. Specifically, the application shows as the bacteria having associated the most significant microbial impact may not be the most abundant. This offers the potential for integrated management strategies to promote favourable microbial conditions to help safeguard drinking water quality.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-05-07
    Description: The aim of this study was to assess the potential of commercial mycorrhizal inoculants and a rhizobial inoculant to improve soybean yield in Kenya. A promiscuous soybean variety was grown in a greenhouse pot study with two representative soils amended with either water-soluble mineral P or rock P to assess product performance. The performance of selected mycorrhizal inoculants combined with a rhizobial inoculant (Legumefix) was then assessed with farmer groups in three agroecological zones using a small-plot, randomized complete block design to assess soybean root colonization by mycorrhiza, nodulation, and plant biomass production in comparison to rhizobial inoculant alone or with water-soluble mineral P. Greenhouse results showed highly significant root colonization by commercial mycorrhizal inoculant alone (p 〈 0.001) and in interaction with soil type (p 〈 0.0001) and P source (p 〈 0.0001). However, no significant effect was shown in plant P uptake, biomass production, or leaf chlorophyll index. In field conditions, the effects of mycorrhizal and rhizobial inoculants in combination or alone were highly context-specific and may induce either a significant increase or decrease in root mycorrhizal colonization and nodule formation. Mycorrhizal and rhizobial inoculants in combination or alone had limited effect on plant P uptake, biomass production, leaf chlorophyll index, and grain yield. Though some mycorrhizal inoculants induced significant root colonization by mycorrhizal inoculants, this did not lead to higher soybean yield, even in soils with limited P content. Our results are further evidence that inoculant type, soil type, and P source are critical factors to evaluate commercial inoculants on a context-specific basis. However, our results highlight the need for the identification of additional targeting criteria, as inoculant type, soil type, and P source alone were not enough to be predictive of the response. Without the identification of predictive criteria for improved targeting, the economic use of such inoculants will remain elusive.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-18
    Description: Business cases promoting the introduction of digital water metering (DWM) have, to date, focused on a limited number of benefits, especially water savings, metering costs, occupational health and safety (OHS), and deferral of capital works. An earlier study by the authors catalogued 75 possible benefits and developed a taxonomy based on a literature review, interviews and water industry reports. The objective of the present study was to elicit the opinions of Australian water industry experts on the benefits, then use the opinions to form probability distributions which, in future work, could be used to model the value of DWM benefits. The study findings have implications for researchers and practitioners seeking to accurately and stochastically model the benefits of DWM transformation programmes. Thematic analyses on the open ended responses scaled likelihood and estimated value of benefits into comparable units. We found 82% support for the benefits of DWM with only 6% disagreement and 12% non-commital; the savings value of cost of water benefits were predominately expected to range between 5% and 10% and much higher in some individual situations, while charges/operational costs benefits were predominately expected to range between 45% and 100%; and, moreover, we indicated how a risk-based range of project benefit could potentially be calculated. Opportunities for further investigations were identified.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...