ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Molecular Diversity Preservation International  (2)
  • 2015-2019  (2)
  • 2000-2004
Sammlung
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-06-14
    Beschreibung: More than 80% of infectious bacteria form biofilm, which is a bacterial cell community surrounded by secreted polysaccharides, proteins and glycolipids. Such bacterial superstructure increases resistance to antimicrobials and host defenses. Thus, to control these biofilm-forming pathogenic bacteria requires antimicrobial agents with novel mechanisms or properties. Pseudomonas aeruginosa, a Gram-negative opportunistic nosocomial pathogen, is a model strain to study biofilm development and correlation between biofilm formation and infection. In this study, a recombinant hemolymph plasma lectin (rHPLOE) cloned from Taiwanese Tachypleus tridentatus was expressed in an Escherichia coli system. This rHPLOE was shown to have the following properties: (1) Binding to P. aeruginosa PA14 biofilm through a unique molecular interaction with rhamnose-containing moieties on bacteria, leading to reduction of extracellular di-rhamnolipid (a biofilm regulator); (2) decreasing downstream quorum sensing factors, and inhibiting biofilm formation; (3) dispersing the mature biofilm of P. aeruginosa PA14 to improve the efficacies of antibiotics; (4) reducing P. aeruginosa PA14 cytotoxicity to human lung epithelial cells in vitro and (5) inhibiting P. aeruginosa PA14 infection of zebrafish embryos in vivo. Taken together, rHPLOE serves as an anti-biofilm agent with a novel mechanism of recognizing rhamnose moieties in lipopolysaccharides, di-rhamnolipid and structural polysaccharides (Psl) in biofilms. Thus rHPLOE links glycan-recognition to novel anti-biofilm strategies against pathogenic bacteria.
    Digitale ISSN: 1660-3397
    Thema: Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-09-02
    Beschreibung: Opioid addiction is a chronic and complex disease characterized by relapse and remission. In the past decade, the opioid epidemic or opioid crisis in the United States has raised public awareness. Methadone, buprenorphine, and naloxone have proven their effectiveness in treating addicted individuals, and each of them has different effects on different opioid receptors. Classic and molecular genetic research has provided valuable information and revealed the possible mechanism of individual differences in vulnerability for opioid addiction. The polygenic risk score based on the results of a genome-wide association study (GWAS) may be a promising tool to evaluate the association between phenotypes and genetic markers across the entire genome. A novel gene editing approach, clustered, regularly-interspaced short palindromic repeats (CRISPR), has been widely used in basic research and potentially applied to human therapeutics such as mental illness; many applications against addiction based on CRISPR are currently under research, and some are successful in animal studies. In this article, we summarized the biological mechanisms of opioid addiction and medical treatments, and we reviewed articles about the genetics of opioid addiction, the promising approach to predict the risk of opioid addiction, and a novel gene editing approach. Further research on medical treatments based on individual vulnerability is needed.
    Print ISSN: 1661-6596
    Digitale ISSN: 1422-0067
    Thema: Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...