ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈div data-abstract-type="normal"〉 〈p〉Agmantinite, ideally Ag〈span〉2〈/span〉MnSnS〈span〉4〈/span〉, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as orange–red crystals up to 100 μm across. Agmantinite is translucent with adamantine lustre and possesses a red streak. It is brittle. Neither fracture nor cleavage were observed. Based on the empirical formula the calculated density is 4.574 g/cm〈span〉3〈/span〉. On the basis of chemically similar compounds the Mohs hardness is estimated at between 2 to 2½. In plane-polarised light agmantinite is white with red internal reflections. It is weakly bireflectant with no observable pleochroism with red internal reflections. Between crossed polars, agmantinite is weakly anisotropic with reddish brown to greenish grey rotation tints. The reflectances (〈span〉R〈/span〉〈span〉min〈/span〉 and 〈span〉R〈/span〉〈span〉max〈/span〉) for the four standard wavelengths are: 19.7 and 22.0 (470 nm); 20.5 and 23.2 (546 nm); 21.7 and 2.49 (589 nm); and 20.6 and 23.6 (650 nm), respectively.〈/p〉 〈p〉Agmantinite is orthorhombic, space group 〈span〉P〈/span〉2〈span〉1〈/span〉〈span〉nm〈/span〉, with unit-cell parameters: 〈span〉a〈/span〉 = 6.632(2), 〈span〉b〈/span〉 = 6.922(2), 〈span〉c〈/span〉 = 8.156(2) Å, 〈span〉V〈/span〉 = 374.41(17) Å〈span〉3〈/span〉, 〈span〉a〈/span〉:〈span〉b〈/span〉:〈span〉c〈/span〉 0.958:1:1.178 and 〈span〉Z〈/span〉 = 2. The crystal structure was refined to 〈span〉R〈/span〉 = 0.0575 for 519 reflections with 〈span〉I 〉〈/span〉 2σ(〈span〉I〈/span〉). Agmantinite is the first known mineral of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190522072108342-0385:S0026461X18001391:S0026461X18001391_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉〈span〉M〈/span〉〈span〉II〈/span〉〈span〉M〈/span〉〈span〉IV〈/span〉S〈span〉4〈/span〉 type that is derived from wurtzite rather than sphalerite by ordered substitution of Zn, analogous to the substitution pattern for deriving stannite from sphalerite. The six strongest X-ray powder-diffraction lines derived from single-crystal X-ray diffraction data [〈span〉d〈/span〉 in Å (intensity)] are: 3.51 (s), 3.32 (w), 3.11 (vs), 2.42 (w), 2.04 (m) and 1.88 (m). The empirical formula (based on 8 apfu) is (Ag〈span〉1.94〈/span〉Cu〈span〉0.03〈/span〉)〈span〉Σ1.97〈/span〉(Mn〈span〉0.98〈/span〉Zn〈span〉0.05〈/span〉)〈span〉Σ1.03〈/span〉Sn〈span〉0.97〈/span〉S〈span〉4.03〈/span〉.The crystal structure-derived formula is Ag〈span〉2〈/span〉(Mn〈span〉0.69〈/span〉Zn〈span〉0.31〈/span〉)〈span〉Σ1.00〈/span〉SnS〈span〉4〈/span〉 and the simplified formula is Ag〈span〉2〈/span〉MnSnS〈span〉4〈/span〉.〈/p〉 〈p〉The name is for the composition and the new mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2014-083).〈/p〉 〈/div〉
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈div data-abstract-type="normal"〉〈p〉The crystal structure of the mineral gortdrumite, a rare copper-mercury-iron sulfide, was solved using intensity data collected using a crystal from the Neuschurf adit, Leogang, Salzburg, Austria. This study revealed that the structure is triclinic, space group 〈span〉P〈/span〉〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20181017132303927-0397:S0026461X1800018X:S0026461X1800018X_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, with cell parameters: 〈span〉a〈/span〉 = 9.677(4), 〈span〉b〈/span〉 = 9.865(5), 〈span〉c〈/span〉 = 11.992(5) Å, α = 77.85(4), β = 79.42(3), γ = 76.30(4)°, 〈span〉V〈/span〉 = 1076.5(8) Å〈span〉3〈/span〉 and 〈span〉Z〈/span〉 = 1. The refinement led to an 〈span〉R〈/span〉 index of 0.0833 for 3335 independent reflections and 143 parameters. Twelve S sites (one with half occupancy) and eighteen metal sites (5 Hg, 12 Cu and 1 Fe) occur in the crystal structure of gortdrumite. Mercury cations link two sulfur atoms in a linear coordination, Cu cations are found in various low-coordination (2, 3 and 4) sites, in agreement with the Cu preference for such environments, and Fe in tetrahedral coordination. Metal–metal interactions are also present and these contacts are discussed in relation with other copper sulfides, intermetallics and pure metals. Electron microprobe analyses of the crystal used for the structural study led to the formula Cu〈span〉24.83〈/span〉Fe〈span〉1.73〈/span〉Hg〈span〉9.09〈/span〉S〈span〉22.35〈/span〉, on the basis of 58 atoms. On the basis of information gained from the structural and chemical characterization, the crystal-chemical formula was revised to Cu〈span〉24〈/span〉Fe〈span〉2〈/span〉Hg〈span〉9〈/span〉S〈span〉23〈/span〉 (〈span〉Z〈/span〉 = 1) instead of (Cu,Fe)〈span〉6〈/span〉Hg〈span〉2〈/span〉S〈span〉5〈/span〉 as reported previously.〈/p〉〈/div〉
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-02
    Description: Agmantinite, ideally Ag2MnSnS4, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as orange–red crystals up to 100 μm across. Agmantinite is translucent with adamantine lustre and possesses a red streak. It is brittle. Neither fracture nor cleavage were observed. Based on the empirical formula the calculated density is 4.574 g/cm3. On the basis of chemically similar compounds the Mohs hardness is estimated at between 2 to 2½. In plane-polarised light agmantinite is white with red internal reflections. It is weakly bireflectant with no observable pleochroism with red internal reflections. Between crossed polars, agmantinite is weakly anisotropic with reddish brown to greenish grey rotation tints. The reflectances (Rmin and Rmax) for the four standard wavelengths are: 19.7 and 22.0 (470 nm); 20.5 and 23.2 (546 nm); 21.7 and 2.49 (589 nm); and 20.6 and 23.6 (650 nm), respectively.Agmantinite is orthorhombic, space group P21nm, with unit-cell parameters: a = 6.632(2), b = 6.922(2), c = 8.156(2) Å, V = 374.41(17) Å3, a:b:c 0.958:1:1.178 and Z = 2. The crystal structure was refined to R = 0.0575 for 519 reflections with I > 2σ(I). Agmantinite is the first known mineral of ${M}_{ m 2}^{ m I} $MIIMIVS4 type that is derived from wurtzite rather than sphalerite by ordered substitution of Zn, analogous to the substitution pattern for deriving stannite from sphalerite. The six strongest X-ray powder-diffraction lines derived from single-crystal X-ray diffraction data [d in Å (intensity)] are: 3.51 (s), 3.32 (w), 3.11 (vs), 2.42 (w), 2.04 (m) and 1.88 (m). The empirical formula (based on 8 apfu) is (Ag1.94Cu0.03)Σ1.97(Mn0.98Zn0.05)Σ1.03Sn0.97S4.03.The crystal structure-derived formula is Ag2(Mn0.69Zn0.31)Σ1.00SnS4 and the simplified formula is Ag2MnSnS4.The name is for the composition and the new mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2014-083).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-08-01
    Description: Oscarkempffite, ideally Ag10Pb4(Sb17Bi9)∑=26S48, is a new mineral species found in old material (1929–30) from the Colorada vein, Animas mine, Chocaya Province, Department of Potosi, Bolivia. It is associated with aramayoite, stannite, miargyrite, pyrargyrite and tetrahedrite. Oscarkempffite forms anhedral grains and grain aggregates up to 10 mm across. The mineral is opaque, greyish black with a metallic lustre; it is brittle without any discernible cleavage. In reflected light oscarkempffite is greyish white, pleochroism is distinct, white to dark grey. Internal reflections are absent. In crossed polars, anisotropism is distinct with rotation tints in shades of grey. The reflectance data (%, air) are: 39.9, 42.6 at 470 nm, 38.6, 41.7 at 546 nm, 38.1, 41.2 at 589 nm and 37.3, 40.6 at 650 nm. Mohs hardness is 3–3½, microhardness VHN50 exhibits a range 189–208, with a mean value 200 kg mm–2. The average results of four electron-microprobe analyses in a grain are: Cu 0.24(7), Ag 14.50(8), Pb 11.16(14), Sb 28.72(16), Bi 24.56(17), S 20.87(5), total 100.05(6) wt.%, corresponding to Cu0.24Ag9.92Pb4.00Sb17.36Bi8.64S47.84 (on the basis of Me + S = 88 apfu). The simplified formula, Ag10Pb4Sb17Bi9S48, is in accordance with the results of a crystal-structure determination. The density, 5.8 g cm–3, was calculated using the ideal formula. Oscarkempffite has an orthorhombic cell with a = 13.199(2), b = 19.332(3), c = 8.249(1) Å, V = 2116.3(5) Å3, space group Pnca and Z = 1. The strongest eight lines in the (calculated) powder-diffraction pattern are [d in Å(I)hkl]: 3.66(35)(122), 3.37(70)(132), 3.34(100)(250), 2.982(55)(312), 2.881(86)(322), 2.733(29)(332), 2.073(27)(004) and 2.062(31)(182). Comparison with gustavite, andorite and roshchinite confirms its independence as a mineral species.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0048-3486
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Economics
    Notes: In the past two decades, the way enterprises in the People's Republic of China (PRC) manage their human resources has changed dramatically. Multinational enterprises (MNEs) have entered into the "strategic investor" phase, where now the integration of PRC operations into the MNE network receives growing attention. For these companies HRM is often of high strategic importance. This article seeks to explore how differences in HRM practices in such businesses vary with their ownership forms. The study is based on in-depth interviews with HRM managers - on the PRC country-level - in 12 MNEs. The large majority of the participating companies clearly stated that today the HRM function is of high strategic importance for their operations in the PRC and is predominantly controlled by the MNE partner. Although equity ownership stake is an important variable influencing HRM policies and practices, it is shown that it needs to be seen in conjunction with other possibly non-equity control-mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Bingley : Emerald
    International journal of service industry management 16 (2005), S. 135-151 
    ISSN: 0956-4233
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Economics
    Notes: Purpose - This paper aims to clarify the interdependencies among three main stakeholder groups and to show how to manage overall service quality in customer care centers. Design/methodology/approach - A framework of the relations among the target groups of a customer care center was developed. A survey methodology with a 360° approach that encompasses top management, employees and final customers as three main target groups was conducted. The sample incorporates 58 customer care centers and seven industries in Germany and Austria. Besides the management interviews, we received 1,580 completed questionnaires by employees, and 2,010 completed questionnaires by customers. Multiple regression analysis was applied on multi-item measurement scales of the three different levels. Findings - We were able to show that employee satisfaction is the main factor for driving customer orientation. Further management efforts resulting in employee orientation will facilitate the job of employees and increase employee loyalty. Research limitations/implications - Only 16 customer care centers participated in all three parts of the study. Practical implications - Companies should consider the needs of their employees and possibly initiate measures to foster employee satisfaction. A strict quality orientation could signal a low level of trust toward the employees. It is essential that firms invest in their employees and apply an employee-oriented management style. Originality/value - The study encompasses three relevant stakeholder groups on a broad empirical base, which is unique until now in the research field of customer care centers. Interdependencies among the three perspectives could be revealed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...