ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-02
    Description: Two competing hypotheses suggest lunar Mg-suite parental melts formed: (1) by shallow-level partial melting of a hybridized source region (containing ultramafic cumulates, plagioclase-bearing rocks, and KREEP), producing a plagioclase-saturated, MgO-rich melt, or (2) when plagioclase-undersaturated, MgO-rich melts were brought to plagioclase saturation during magma-wallrock interactions within the anorthositic crust. To further constrain the existing models, phase equilibria experiments have been performed on a range of Mg-suite parental melt compositions to investigate which composition can best reproduce two distinct spinel populations found within the Mg-suite troctolites—chromite-bearing (FeCr 2 O 4 ) troctolites and the more rare pink spinel (MgAl 2 O 4 or Mg-spinel) troctolites (PST). Phase equilibria experiments at 1 atm pressure were conducted under reducing conditions $$(\mathrm{log}\phantom{\rule{0.4em}{0ex}}{f}_{{\mathrm{O}}_{2}}\sim \mathrm{IW}-1)$$ and magmatic temperatures (1225–1400 °C) to explore the spinel compositions produced from melts predicted by the models above. Additionally, the experimental data are used to calculate a Sp-Ol, Fe-Mg equilibrium exchange coe to cient to correct natural spinel for sub-solidus re-equilibration with olivine in planetary samples: Sp-Ol $${K}_{\mathrm{D}}^{\hbox{ Fe-Mg }}=0.044\mathrm{Cr}{\#}_{\mathrm{sp}}+1.5$$ (R 2 = 0.956). Melts from each model (≥50% normative anorthite) produce olivine, plagioclase, and Mg-spinel compositionally consistent with PST samples. However, chromite was not produced in any of the experiments testing current Mg-suite parental melt compositions. The lack of chromite in the experiments indicates that current estimates of Mg-suite parental melts can produce Mg-spinel bearing PST, but not chromite-bearing troctolites and dunites. Instead, model calculations using the MAGPOX equilibrium crystallization program predict chromite production from plagioclase-undersaturated melts (〈20% normative anorthite). If so, experimental and model results suggest chromite in Mg-suite crystallized from plagioclase-undersaturated parental melts, whereas Mg-spinel in the PST is an indicator of magma-wallrock interactions within the lunar crust (a mechanism that increases the normative anorthite contents of initially plagioclase-undersaturated Mg-suite parental melts, eventually producing Mg-spinel). The constraints for magmatic chromite crystallization suggest Mg-suite parental melts were initially plagioclase-undersaturated. In turn, a plagioclase-undersaturated Mg-suite parent is consistent with mantle overturn models that predict Mg-suite parent magmas resulted from decompression melting of early ultramafic cumulates produced during the differentiation of a global lunar magma ocean.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-25
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-06
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-22
    Description: The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ∼13 μT. These data...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-03
    Description: A model for the origin, ascent, and eruption of the lunar A17 orange glass magma has been constructed using petrological constraints from gas solubility experiments and from analyses of the lunar sample 74220 to better determine the nature and origin of this unique explosive eruption. Three stages of the eruption have been identified. Stage 1 of the eruption model extends from ~550 km, the A17 orange glass magma source region based on phase equilibria studies, to 50 km depth in the Moon. Stage 2 extends from ~50 km to 500 m, where a C-O-H-S gas phase formed and grew in volume based on melt inclusion analyses and measurements. The volume of the gas phase at 500 m depth below the surface is calculated to be 7 to 15 vol% of the magma (closed-system) using the minimum and maximum estimates of CO, H 2 O, and S loss from the melt. In Stage 3, depths shallower than ~450 m, the rising magma exsolved an additional 800–900 ppm H 2 O and 300 ppm S, increasing the moles in the gas by a factor of 3 to 4. The closed-system gas phase is calculated to reach ~70 vol% at ~130 m depth, enough to fragment the magma and form pyroclastic beads. However, fragmentation (bead formation) is interpreted to have occurred at depths ranging from 600 to 300 m below the lunar surface based on the pressure necessary to explain the C content of the orange glass beads. The gas volume (70%) required to fragment the ascending magma at this depth is a factor of ~5 greater than the volume determined for closed-system degassing of an orange glass magma at 500 m, strongly implying that the gas was produced by open-system degassing as the magma ascended from greater depths. Formation of the dike carrying the magma up from the ~550 km deep source is considered to occur by a crack propagation mechanism ( Wilson and Head 2003 , 2017 ). The rapid dike-propagation process facilitates gas collection by open-system degassing in the upper part of the dike. This is necessary to achieve the gas volumes required for magma fragmentation at 600 m depths, and the magma-ascent velocities to explain the wide areal distribution of the bead deposit. The explosive nature of the picritic orange glass eruption, and the homogeneity of the bead compositions, are consistent with this gas-assisted eruption scenario, as is the evidence of a Fe-metal forming reduction event during Stage 2 followed by a Stage 3 oxidation event in the ascending magma.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...