ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (2)
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009.
    Description: Tropical cyclone activity over the last 5000 years is investigated using overwash sediments from coastal lagoons on the islands of Vieques, Puerto Rico and Koshikijima, Japan. A simple sediment transport model can reproduce the landward fining deposits observed at Vieques, and reveals that although the record exhibits centennial-tomillennial changes in hurricane overwash frequency, the magnitude of these flooding events has remained relatively constant. Stochastic simulations of hurricane overwash show that breaks in activity at Vieques are extremely long and unlikely to occur under the current hurricane climatology and the present barrier morphology. Periods of less frequent hurricane deposition at Vieques are contemporaneous with intervals of increased El Niño occurrences and reduced precipitation in West Africa, suggesting a dominant influence by these two climatic phenomena. Hiatuses in overwash activity between 3600- to-2500 and 1000-500 years ago are longer than what is generated by overwash simulations under a constant El Niño-like state, indicating that mechanisms in addition to variability in the El Niño/Southern Oscillation are required to completely produce the overwash variability at Vieques. Periods of low overwash activity at Vieques are concurrent with increased overwash activity at Kamikoshiki and may indicate a correspondence between tropical cyclone activity in the western Northern Atlantic and the western North Pacific.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, the Risk Prediction Initiative, the National Geographic Society, the Andrew W. Mellon Foundation Endowed Fund for Innovative Research, and graduate student fellowships from the Coastal Ocean Institute at Woods Hole Oceanographic Institution and the United States Geological Survey.
    Keywords: Cyclones ; Sedimentation and deposition
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1999
    Description: This study uses geophysical and sedimentological data collected from the Lower Hudson River estuary to identify the depositional response of the estuary to high river discharge events. Erosional and depositional environments in the estuary are identified through the use of side-scan sonar, bottom penetrating sonar and surficial sediment sampling. Sediment cores are used to document deposit thicknesses and to obtain the spatial distribution of estuarine deposits. Results show a high degree of spatial and temporal variability in sedimentation within the estuary. Two primary deposits are identified underneath the turbidity maximum for the estuary. Approximately 300,000 metric tons of sediment were deposited within these two deposits during May and June of 1998. This short-term accumulation underneath the turbidity maximum of the estuary can account for 30 to 98 percent of the estimated, river-borne sediment load supplied to the estuary during the 1997-1998 water year. Both the tidally produced stratigraphy observed in sediment cores and the spatial distribution of identified deposits, support the theory that sedimentation underneath the turbidity maximum of the estuary is primarily the results of a convergence in bottom water flow, caused by the formation of a salinity front during ebb tide.
    Description: This research was funded by the Hudson River Foundation and a National Science Foundation Coastal Trainee Fellowship.
    Keywords: Sedimentation and deposition ; Sediment transport ; River sediments ; Estuarine sediments
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...