ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Marine Technology Society  (1)
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Thorrold, S. R., Adams, A., Bucklin, A., Buesseler, K., Fischer, G., Govindarajan, A., Hoagland, P., Jin, D., Lavery, A., Llopez, J., Madin, L., Omand, M., Renaud, P. G., Sosik, H. M., Wiebe, P., Yoerger, D. R., & Zhang, W. Twilight zone observation network: a distributed observation network for sustained, real-time interrogation of the Ocean’s Twilight Zone. Marine Technology Society Journal, 55(3), (2021): 92–93, https://doi.org/10.4031/MTSJ.55.3.46.
    Description: The ocean's twilight zone (TZ) is a vast, globe-spanning region of the ocean. Home to myriad fishes and invertebrates, mid-water fishes alone may constitute 10 times more biomass than all current ocean wild-caught fisheries combined. Life in the TZ supports ocean food webs and plays a critical role in carbon capture and sequestration. Yet the ecological roles that mesopelagic animals play in the ocean remain enigmatic. This knowledge gap has stymied efforts to determine the effects that extraction of mesopelagic biomass by industrial fisheries, or alterations due to climate shifts, may have on ecosystem services provided by the open ocean. We propose to develop a scalable, distributed observation network to provide sustained interrogation of the TZ in the northwest Atlantic. The network will leverage a “tool-chest” of emerging and enabling technologies including autonomous, unmanned surface and underwater vehicles and swarms of low-cost “smart” floats. Connectivity among in-water assets will allow rapid assimilation of data streams to inform adaptive sampling efforts. The TZ observation network will demonstrate a bold new step towards the goal of continuously observing vast regions of the deep ocean, significantly improving TZ biomass estimates and understanding of the TZ's role in supporting ocean food webs and sequestering carbon.
    Description: This research is part of the Woods Hole Oceanographic Institution’s Ocean Twilight Zone Project, funded as part of The Audacious Project housed at TED.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...