ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-27
    Description: In this study, we developed a reflective localized surface plasmon resonance (LSPR) optical fiber sensor, based on silver nanoparticles (Ag NPs). To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-18
    Description: The adsorption of Th(IV) onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs) in the absence and presence of hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) has been investigated. C60(OH)n, C60(C(COOH)2)n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV) was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV) adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV) adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV) on the same oMWCNTs free of C60(OH)n or C60(C(COOH)2)n, the study of a ternary system showed the inhibition effect of C60(OH)n at high concentration on the adsorption of Th(IV) in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH)2)n, even at its low concentration, on Th(IV) adsorption was observed in acid medium.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-31
    Description: Sustainability, Vol. 10, Pages 1029: A Gateway to Successful River Restorations: A Pre-Assessment Framework on the River Ecosystem in Northeast China Sustainability doi: 10.3390/su10041029 Authors: Xin Jiang Yuyu Liu Shiguo Xu Wei Qi Natural rivers have been disturbed for hundreds of years by human activities. Previous water conservancy projects in the form of dams, reservoirs, dykes, and irrigation infrastructure focused on the social and economic benefits and disregarded the adverse effects on the physical, chemical, and biological characteristics of the affected rivers. Since the 2000s, the comprehension of river remolding has transformed so decisions are more socially and ecologically beneficial. However, restoration actions are often implemented aimlessly, without a detailed plan or sufficient communication, leading to the failure of accomplishing objectives for a variety of ecologic, financial, and social reasons. Thus, a pre-assessment framework is proposed in this paper, to determine river restoration priorities, emphasizing both social and ecological aspects. The vague notion of river health is evaluated using the Variable Fuzzy Assessment Model (VFAM) and expressed by modified Nightingale Rose Diagrams (NRDs). The river social ecosystem was subsequently analysed using this framework in the Ashihe River near Harbin City, Northeast China. The application of VFAM demonstrated that the health status of the upper, middle, and lower sections of the river could be classified as sub-healthy, degraded, or sick in terms of ecosystem structures, and sub-healthy, degraded, or degraded in terms of social functions, respectively. The health status of the lower section was the poorest and should be restored first. Using NRDs, we found that water quality deterioration and irrigation works are the two key factors in river degradation, which must be improved throughout the entire watershed. Aesthetics and recreation should also be given priority to restore the lower section due to the demands of nearby residents. Several measures are also suggested for decision makers who need a more detailed design to implement. This framework potentially assists with communicating with stakeholders, avoids aimless restoration actions, and contributes to comparing with the measuring after restorations.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-01
    Description: Sustainability, Vol. 9, Pages 2190: Spatiotemporal Dynamics of Beijing’s Urbanization Efficiency from 2005 to 2014 Sustainability doi: 10.3390/su9122190 Authors: Wei Qi Ying Gao Qian Zhang In the context of Beijing’s accelerated economic growth, a high urbanization rate and associated urban problems pose challenges. We collected panel data for the period 2005–2014 to examine the relationship between Beijing’s urbanization efficiency and economic growth rate as well as its spatial patterns of dynamic and static urbanization efficiency. Specifically, we developed a comprehensive index system for assessing Beijing’s economic growth rate and urbanization efficiency at the district (county) level. Economic level was selected as an indicator of the economic growth rate. Economic urbanization and consumption levels were selected as indicators of urbanization efficiency. We applied a sequential Malmquist total factor productivity index to estimate the dynamic urbanization efficiency and economic growth rate at the district/country level from 2005 to 2014. We measured Beijing’s static urbanization efficiency in 2014 using a data envelopment analysis model and assessed its spatiotemporal dynamics and urbanization efficiency pattern using a Getis–Ord General Gi index. The results indicated an overall average increase of 1.07% in the total factor urbanization efficiency (TFUE), with an average value of 0.91, while the total factor economic growth rate (TFEE) remained stable at an average value of 0.979. The low TFUE level evidently continues to significantly constrain TFEE. Both TFUE and TFEE levels in the Capital Function Core (CFC) area were significant, exhibiting high inputs and outputs, while these levels in the Urban Function Development (UFD), City Development Zone (CDZ), and Ecological Conservation Development (ECD) areas were below 1 for most periods, strongly indicating inefficient factor allocation. In view of this spatial pattern, TFUE’s regional spatial distribution appears remarkable, showing a decreasing trend from north to south in Beijing, excluding CFC areas. During the period 2005–2014, the CFC area and northeastern Beijing gradually developed into high urbanization efficiency cluster regions. The dominant factors accounting for the difference in total factor productivity indices between TFUE and TFEE were technical change (TC) and scale efficiency change (SEC), and the main factors driving the regional spatial distribution pattern for urbanization efficiency were TC and technical efficiency change (TEC). Accordingly, local governments should promote TC, SEC, and TEC to improve urbanization levels, with optimal strategies entailing strengthening policy support and encouraging investments in technology in UFD, CDZ, and ECD areas. Within Beijing, Dongcheng, Xicheng, Shijingshan, Mentougou, and Yanqing demonstrated effectively balanced static urbanization efficiency levels in 2014, whereas these levels in the city’s remaining 11 districts were not optimal, with extensive development. County governments should therefore promote efforts to reduce input redundancy and improve pure technical efficiency to maintain sustainable and steady development.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-31
    Description: Water, Vol. 10, Pages 126: Multiple Climate Change Scenarios and Runoff Response in Biliu River Water doi: 10.3390/w10020126 Authors: Xueping Zhu Chi Zhang Wei Qi Wenjun Cai Xuehua Zhao Xueni Wang The impacts of temperature and precipitation changes on regional evaporation and runoff characteristics have been investigated for the Biliu River basin, which is located in Liaoning Province, northeast China. Multiple climate change scenarios from phase 3 and phase 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) (21 scenarios in total) were utilized. A calibrated hydrologic model—SWAT model—was used to simulate future discharges based on downscaled climate data through a validated morphing method. Results show that both annual temperature and precipitation increase under most of the CMIP3 and CMIP5 scenarios, and increase more in the far future (2041–2065) than in the near future (2016–2040). These changes in precipitation and temperature lead to an increase in evaporation under 19 scenarios and a decrease in runoff under two-thirds of the selected scenarios. Compared to CMIP3, CMIP5 scenarios show higher temperature and wider ranges of changes in precipitation and runoff. The results provide important information on the impacts of global climate change on water resources availability in the Biliu River basin, which is beneficial for the planning and management of water resources in this region.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...